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Abstract

Individuals assume distinct roles in different situations throughout their lives and people who

consistently adopt particular roles develop specific commonalities in behavior. As a result, roles

can be defined in terms of observable tendencies and behavioral patterns that can be manifest

through a wide range of modalities during a conversational interaction. For instance, an interviewer

is expected to use more interrogative words than the interviewee and a teacher is likely to speak in

a more didactic style than the student.

Speaker role recognition is the task of assigning a role label in a speech segment where a

single speaker is active, through computational models that capture such behavioral characteristics.

The approaches that tackle this problem depend on successful pre-processing steps applied on the

recorded conversation, such as speaker segmentation and clustering or automatic speech recognition,

something that inevitably leads to error propagation. At the same time, accurate role information

can provide valuable cues for the aforementioned speech processing tasks.

In this dissertation I propose techniques that combine role recognition with other speech pro-

cessing modules to alleviate the problem of error propagation. Additionally, focusing on the task of

speaker diarization (that answers the question who spoke when), I demonstrate that role-aware sys-

tems can achieve improved performance when compared to traditional, state-of-the-art approaches.

Finally, I showcase how some of the proposed techniques can be applied in a real-world system, by

presenting and analyzing an automated tool for psychotherapy quality assessment, where robust

diarization and role identification (i.e., therapist vs. patient) are of critical importance.

xv



Introduction

Roles and Human Interactions

Roles are one of the most important concepts in understanding and modeling human behavior.

According to social psychology, individuals assume distinct roles in different situations through-

out their lives that both guide their own behavioral patterns and create expectations about the

behaviors of other people they interact with (Biddle, 1986). Systems of human interaction can be

viewed as “microscopic social systems” (Bales, 1950) and roles can be defined as stated functions

“associated with a position in a group (a status) with rights and duties toward one or more other

group members” (Hare, 1994).

The underlying social structure, the context, and the end goal of an interaction both enable

and constrain the participants’ actions and behaviors (Gleave, Welser, Lento, & Smith, 2009),

and this is reflected on the participants’ roles. For instance, the role of the parent is associated

with protecting and caring for offspring, the role of the chief executive officer is linked to taking

managerial decisions that will lead to the economic growth of a company, and the role of the

lecturer is related to conveying a clear message to their audience. Those roles can be adopted by

the same person during different interactions and can occasionally collide and conflict with each

other. However, clear role expectations can assist towards better task distribution within a group,

promote individual responsibility and accountability, improve group cohesion, and eventually lead

to more effective task performance (Mudrack & Farrell, 1995).

Roles can be distinguished into two broad categories. Formal roles (e.g., interviewer vs. in-

terviewee) are typically associated with pre-defined objectives of an agent within a group, while

informal roles (e.g., protagonist vs. supporter in a group discussion) can develop naturally as a

1



result of interpersonal interactions and social dynamics and are sometimes referred to as emergent

roles (Hare, 1994). Additionally, roles can be assigned to people either implicitly, because of the

organizational or social structure of the environment where the interaction takes place, or explicitly,

by requiring participants to perform specific tasks and providing detailed guidelines. Such scripted

roles are of particular interest in collaborative learning scenarios, where role playing can foster

engagement, discussion, and knowledge sharing (Strijbos & De Laat, 2010), leading to improved

learning outcomes when compared to unstructured interactions (Weinberger, Stegmann, & Fischer,

2010). They are also a key aspect in group psychotherapy where patients learn to adhere to specific

social and moral values through psychodrama (Kipper, 1992).

In any case, people who consistently adopt particular roles develop specific commonalities in

behavior (Gleave et al., 2009). As a result, roles can be defined in terms of observable tendencies

and behavioral regularities that can be manifest through a wide range of modalities during a

conversational interaction. Thus, different roles may be associated with distinguishable patterns

observed in acoustic, prosodic, linguistic, and structural characteristics (Bales, 1950; Knapp, Hall,

& Horgan, 2013; Sacks, Schegloff, & Jefferson, 1978). For instance, a teacher is likely to speak

in a more didactic style while a student be more inquisitive, an interviewer is expected to use

more interrogative words than the interviewee, a doctor is likely to inquire on symptoms and

prescribe while a patient describe their symptoms, and so on. All those patterns can be viewed as

the structural signatures of the various roles and can be studied through statistical analysis and

appropriate computational modeling.

Computational Analysis of Speaker Roles

The phenomenal growth of multimedia data, including audio recordings, during the last few years,

has been connected to heavy demands for efficient data manipulation applications. Speaker role

information can be used to facilitate such applications, including audio indexing (Bigot, Ferrané,

Pinquier, & André-Obrecht, 2010), topic-based segmentation (Vinciarelli & Favre, 2007), infor-

mation retrieval (Barzilay, Collins, Hirschberg, & Whittaker, 2000), media browser enhancement

(Ordelman, De Jong, & Larson, 2009), and multimedia summarization (Vinciarelli, 2006). At the

same time, speaker roles offer valuable cues when studying various aspects of human communica-

2



tion such as entrainment and dominance (Beňuš et al., 2014; Danescu-Niculescu-Mizil, Lee, Pang,

& Kleinberg, 2012). They are, additionally, of critical importance in computer-supported collab-

orative learning (Strijbos & De Laat, 2010), as well as in social computing and robotics (Beňuš,

2014).

Roles can also be of great value for the development of specialized dialogue models. For instance,

in the psychotherapy domain, chatbots can play both the role of a therapist to provide mental health

care services (Inkster, Sarda, & Subramanian, 2018), and the role of a patient to assist in training

new counselors (Demasi, Li, & Yu, 2020; Tanana, Soma, Srikumar, Atkins, & Imel, 2019). A closely

related notion to roles is that of personae. Personae, also known as character archetypes, are classes

of characters grouped by similar behavioral traits (Jung, 2014), which means they are affected by

the roles they potentially assume. Being able to adopt consistent personae is an essential element

of engaging, naturalistic interactions (Roller et al., 2021) and, thus, persona modeling has been a

key area of research in developing artificial conversational agents (Demasi et al., 2020; Song, Zhang,

Cui, Wang, & Liu, 2019).

Given the importance of speaker roles in multimedia analysis, it is not surprising that there

has been an increasing interest in applying computational methods to automatically recognize roles

in speech documents. Formal speaker role recognition has been explored in a variety of domains,

such as broadcast news programs (Bigot, Fredouille, & Charlet, 2013; Salamin & Vinciarelli, 2012),

call centers (Garnier-Rizet et al., 2008), business meetings (Favre, Dielmann, & Vinciarelli, 2009;

Sapru & Valente, 2012), psychotherapy sessions (Xiao, Huang, et al., 2016), press conferences

(Li et al., 2017), interviews (Rasipuram & Jayagopi, 2018), and medical discussions (Luz, 2009).

Other studies have investigated recognition of informal, emergent roles in multi-party interactions

occurring in meetings (Sapru & Bourlard, 2015; Zancanaro, Lepri, & Pianesi, 2006) or in computer-

assisted learning platforms (Dowell, Nixon, & Graesser, 2019). Usually, role recognition assigns a

label from a pre-defined, finite set to a speech segment and is, therefore, viewed as a supervised

classification task. However, unsupervised approaches that exploit the structure of the interaction

and discover roles through clustering have been also proposed (Dowell et al., 2019; Li et al., 2017).

In order to address the problem of role recognition, appropriate features that capture the dis-

tinguishable patterns between different roles have to be extracted. Those features need to exploit

characteristics that may be shared between different individuals, since the same role can be played

3



by various speakers. Role-specific regularities can be found in the acoustic (Bigot, Ferrané, et al.,

2010), lexical (Garg, Favre, Salamin, Hakkani Tür, & Vinciarelli, 2008), prosodic (Sapru & Valente,

2012), or structural (Salamin & Vinciarelli, 2012) characteristics of the speech signal, with the im-

portance of each modality being task-specific. The extracted features are coupled with machine

learning algorithms towards the final task of role classification or clustering. Early works in the field

used boosting algorithms, maximum entropy classifiers, and support vector machines (Barzilay et

al., 2000; Y. Liu, 2006; Zancanaro et al., 2006). More recently, social network analysis (Garg et al.,

2008; Marcos-Garćıa, Mart́ınez-Monés, & Dimitriadis, 2015), conditional random fields (Salamin &

Vinciarelli, 2012), and deep learning approaches (Li et al., 2017) have also been explored.

Automated role recognition methods that rely on the computational analysis of recorded speech

signals typically depend on successful pre-processing steps applied on the conversation, such as

speaker diarization (answering the question who spoke when) or automatic speech recognition

(ASR). At the same time, accurate role information can improve the performance of the aforemen-

tioned speech processing tasks (Sapru, Yella, & Bourlard, 2014; Valente, Vijayasenan, & Motlicek,

2011). This interplay between core speech processing and speaker roles is the focus of the current

dissertation.

Research Directions

In this dissertation I build and apply computational models to i) recognize speaker roles using

speech and language processing techniques, and ii) use speaker role information to facilitate speech

applications. In more detail, I study formal roles within both dyadic and multi-party recorded

conversational interactions (e.g., therapist during a psychotherapy session, host during a podcast,

project manager during a business meeting) and:

1. I propose a framework for speaker role recognition that alleviates error propagation from

pre-processing steps, and

2. I leverage speaker role information to improve the performance of core modules in a speech

processing pipeline, with a focus on speaker diarization.
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My work can be summarized in the following research statement :

The behavioral patterns found within conversational interactions can help us study speaker roles

towards improved performance in speech processing tasks.

Outline

The current dissertation is structured as follows:

Introduction defines roles within the context of human interactions and reviews the computa-

tional methods that have been proposed in the literature for recognition and analysis of speaker

roles, as well as applications for which speaker role information is a useful or even essential sub-task.

In Part I the focus is on how we can effectively use specific speech processing techniques in

order to robustly infer speaker roles. To that end, Chapter 1 introduces a framework for the task

of speaker role recognition that combines speaker-specific and role-specific information within a

conversation from both the acoustic and linguistic modalities. The linguistic information here is

acquired through manually-derived transcripts. Chapter 2 describes an effective way to infer speaker

roles from transcribed audio data in real-world situations where transcriptions are obtained by an

automatic speech recognition system.

In Part II we switch the focus on how speaker role information can help improve the performance

of core speech analysis tasks within certain domains. The main area of interest is speaker diarization,

the problem of answering the quesion “who spoke when” within a conversation. Even though this

is typically addressed as an audio-only clustering-based problem, herein I explore ways to provide

supplemental information in the form of linguistically extracted speaker roles. Chapter 3 presents

a way to reduce the clustering diarization problem into a classification one, answering the question

“which role spoke when”. A limitation of the proposed approach is that it assumes a one-to-

one correspondence between speakers and roles, i.e., each speaker needs to be associated with a

unique role within the conversation (e.g., single interviewer vs. single interviewee). To address

this limitation, Chapter 4 introduces an alternative, two-step framework where the language-based

roles are only used to impose constraints on the subsequent audio-based clustering step.

Part III presents how some of the role-based computational techniques proposed in this work

can be successfully applied in a real-world application. To that end, in Chapter 5 a fully automated
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psychotherapy quality assessment tool, deployed in clinical settings, is described and analyzed. We

see why speaker role recognition is an essential element of the system and how the techniques

introduced in Chapter 3 can be used to improve the overall performance, with respect to the

downstream task of therapy evaluation.

The last chapter, named Conclusions and Future Directions, presents an overview of the dis-

sertation and gives potential directions for future work. While my research has focused on formal

roles, computational analysis of informal, emergent speaker roles and their usage within speech

processing is an exciting area for future research. The relationship of speaker roles, either formal or

informal, with other aspects of a person’s identity and with social phenomena is another interesting,

and quite unexplored from a computational perspective, research area.
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Part I

Extracting Speaker Roles
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Chapter 1

Combined Speaker Clustering and

Role Recognition in Conversational

Speech

Speaker role recognition (SRR) is usually addressed either as an independent classification task,

or as a subsequent step after a speaker clustering module. However, the first approach does not

take speaker-specific variabilities into account, while the second one results in error propagation.

In this chapter we propose the integration of an audio-based speaker clustering algorithm with a

language-aided role recognizer into a meta-classifier which takes both modalities into account. That

way, we can treat separately any speaker-specific and role-specific characteristics before combining

the relevant information together. The method is evaluated on two corpora of different conditions

with interactions between a clinician and a patient and it is shown that it yields superior results

for the SRR task.

The work presented in this chapter has been published in (Flemotomos, Papadopoulos, Gibson, & Narayanan,
2018).
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1.1 Introduction

Speaker role recognition (SRR) is the task of assigning a specific role to each speaker turn (speaker-

homogeneous segment) in a speech signal. This task plays a significant role in numerous areas, such

as information retrieval (Barzilay et al., 2000), audio indexing (Bigot, Ferrané, et al., 2010), or social

interaction analysis (Biddle, 1986). Most of the research efforts have been focused on identifying

roles in broadcast news programs or talk shows (Bazillon, Maza, Rouvier, Bechet, & Nasr, 2011;

Damnati & Charlet, 2011a; Laurent, Camelin, & Raymond, 2014; Salamin & Vinciarelli, 2012),

while there have been also works dealing with meeting scenarios (Sapru & Valente, 2012), confer-

ences (Li et al., 2017), medical discussions between domain experts (Luz, 2009), and psychotherapy

sessions (Xiao, Huang, et al., 2016). There have been presented both supervised (Barzilay et al.,

2000; Bigot et al., 2013; Laurent et al., 2014; Rouvier, Delecraz, Favre, Bendris, & Bechet, 2015),

and unsupervised (Hutchinson, Zhang, & Ostendorf, 2010; Li et al., 2017) methods.

The approaches towards dealing with the problem of SRR can be distinguished on the basis

of whether the final decision is made at the turn level or the speaker level. In the former case

(Figure 1.1a), a classifier is built where the input space is the space of speaker turns with no

speaker information available. In a real-world application, those turns are obtained through a

speaker change detection algorithm. The first works in the field use boosting algorithms (Barzilay

et al., 2000) and statistical methods (Barzilay et al., 2000; Y. Liu, 2006) towards this classification

task. Sapru and Valente (2012) combine lexical, prosodic, structural, and dialog act information also

through boosting algorithms. Damnati and Charlet (2011a) combine audio-based and language-

based classifiers with early or late fusion through a logistic regression model. Finally, Rouvier et

al. (2015) have more recently applied deep learning techniques to learn turn-level role embeddings.

In the case of speaker-level SRR (Figure 1.1b), the classifier is built in two steps, the first being

a speaker clustering (SC) algorithm, or a diarization system in the more general case1, where turns

are grouped into same-speaker clusters in an unsupervised way and then each cluster is assigned a

specific role. In this line of work, Vinciarelli (2007) uses a social network analysis approach taking

into consideration relational data across different speakers, while Bigot, Ferrané, et al. (2010) and

1More details on speaker clustering and speaker diarization are provided in Chapters 3 and 4.
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Figure 1.1: Two approaches for speaker role recognition.

Bigot et al. (2013) propose a hierarchical classification system. W. Wang, Yaman, Precoda, and

Richey (2011) investigate the effect of various modalities on the final performance of SRR when

using boosting algorithms. Dufour, Esteve, and Deléglise (2011) study the relationship between

speech spontaneity levels and speaker roles, using a classifier based on boosting methods with

decision stumps, which are replaced by small decision trees by Laurent et al. (2014). Bazillon et al.

(2011) use question types as features, with results reported both at the speaker and the turn level.

In contrast to tasks such as speaker identification, the features to be extracted for SRR have

to exploit characteristics that may be shared between different individuals, since the same role can

be shared between various speakers. However, knowledge of speaker-specific information can lead

to better classification results (e.g., Bazillon et al., 2011), which is the reason why many SRR-

related works operate at the speaker level, employing a SC step. A major drawback of this piped

approach, presented in Figure 1.1b, is that no matter how good the subsequent classifier is, any

potential error in the SC algorithm is propagated and the overall performance is upper-bounded

by the performance of the SC module. Thus, it is desirable to effectively combine speaker-specific

and role-specific information without such problems.

To that end, Salamin and Vinciarelli (2012) propose an appproach where the final role recogni-

tion decision is taken at the turn level, but speaker information, available after a diarization step,

is taken into account during feature extraction. However, that information is only used for the ex-

traction of structural features (such as the average time between two turns of the current speaker).
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Those are combined with turn-level prosodic features and the final classification is made using

conditional random fields (CRFs). It is reported that, when using oracle speaker segmentation,

this combination does not lead to improved results over the independent usage of the two different

feature sets. Damnati and Charlet (2011b) present a hybrid hierarchical approach, where the SC

output is used to distinguish at the speaker level a specific role from all the others, which are then

classified at the turn level. However, this approach has been proposed specifically for application

in broadcast news shows, taking into consideration different variabilities between the anchors and

the reporters on the one hand and between the reporters and others on the other.

In this chapter, we present an alternative generic framework to combine a SC algorithm with

a turn-level supervised role classifier, in such a way that both speaker-specific and role-specific

information is taken into account for the final decision. We evaluate our method on the binary

problem of patient-clinician interactions using manually extracted speaker turns. However, the

framework presented is generalizable to an arbitrary number of speakers, under the assumption of

one-to-one correspondence between speakers and roles in a single speech document, in the sense

that each speaker is uniquely linked to a single role within the conversation2.

1.2 Proposed Method

1.2.1 General framework

We propose the combined architecture presented in Figure 1.2, where the SC and role recognition

modules work in parallel and their output is fed as input to a meta-classifier.

We assume that we know a priori the number of speakers in the speech document, say N ,

and that there is a one-to-one correspondence between the set of speakers {Si}Ni=1 and the set of

roles {Ri}Ni=1. We treat the outputs of the two modules as continuous-valued scores assigned

to each speaker/role label. Thus, the output of the SC algorithm is the sequence of tuples

(p1i)
N
i=1, (p2i)

N
i=1, · · · , (pT i)

N
i=1, such that the k-th turn would be assigned the speaker label Sm

if and only if pkm = maxi pki. Similarly, the output of the role recognition module is the sequence

2This is an assumption we will follow thoughout most of the dissertation. In Chapter 4 we will extensively discuss
how such an assumption can be limiting in some domains and we will see an application-specific approach that can
be used even in cases where such an assumption does not hold.
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Figure 1.2: Proposed approach for speaker role recognition.

of tuples (q1i)
N
i=1, (q2i)

N
i=1, · · · , (qT i)

N
i=1, such that the k-th turn would be assigned the role label

Rm if and only if qkm = maxi qki. In that way, for each turn we have 2N scores corresponding to

the N speakers/roles. Those are treated as input features for the classifier of the last step of the

architecture.

Since there is not a natural correspondence between the two systems’ outputs, it is necessary to

find the optimal matching between the two sets of labels {Si}Ni=1 and {Ri}Ni=1. This is a standard

step taking place in the more general case of diarization systems output combination (Bozonnet et

al., 2010; Tranter, 2005) or for the evaluation of speaker clustering performance (D. Liu & Kubala,

2004). For a small N (which is a realistic assumption for conversational settings), it is easy to

find this matching in an exhaustive way. Formally, if we denote such a matching as the mapping

M : {Si}Ni=1 → {Ri}Ni=1, the optimal matching is defined as

M̂ = argmin
M

T∑
k=1

I(M(S′k) 6= R′k)dk (1.1)

where S′k ∈ {Si}Ni=1 and R′k ∈ {Ri}Ni=1 are the labels assigned by the two modules to the k-th turn,

I(·) is the indicator function, dk is the duration of the turn, and T is the total number of turns in

the speech document.

12



1.2.2 Speaker clustering module

For the speaker clustering module we use a simple bayesian information criterion (BIC) based

hierarchical agglomerative clustering (HAC) algorithm (S. Chen & Gopalakrishnan, 1998; Cheng

& Wang, 2003). At each step of the HAC procedure we use one Gaussian to model each cluster,

so that the distance metric, known as ∆BIC, between two clusters x and y, with nx, ny members

(frames) and with covariance matrices Σx, Σy, respectively, is

∆BIC(x, y) =
1

2
(n log |Σ| − nx log |Σx| − ny log |Σy|)− λ

d(d+ 3)

4
log n (1.2)

where n = nx+ny, Σ is the covariance matrix if we merge the clusters x and y, d is the dimensionality

of the feature vector representing each frame, and λ is a penalty factor (λ = 1 for our experiments).

At each step, the pair of clusters with the minimum ∆BIC is merged.

Speaker clustering in this work is purely based on the acoustic information and as features we

use the 13 first MFCCs for each frame. At the last step, we have one Gaussian modeling each of

the N speakers and the required scores for the turn are the per-frame log-likelihoods with respect

to each Gaussian averaged over the voiced frames of the turn. The voiced frames are identified with

a voice activity detection (VAD) algorithm, which is also applied at the initial step of the HAC

procedure, so that the constructed Gaussians model only the voiced information for each speaker.

1.2.3 Role recognition module

We explore two different approaches for the role recognition module; one language-based and one

audio-based.

In order to build a language-based role recognizer to exploit the linguistic patterns that are

potentially shared between speakers with the same roles, we use similar ideas as in the role matching

module presented by Xiao, Huang, et al. (2016). Since we treat role recognition as a supervised

classification task, we need a role-labeled training set of speaker turns. On that set we train N

n-gram language models (LMs), one for each role. During the test phase, we evaluate the perplexity

of the turn to be classified with respect to all the constructed LMs. The required scores to be used

as input to the meta-classifier are the N negative log-perplexities.

Even though we use the acoustic information in the SC module, we are interested in exploring
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the hypothesis that the exact same information has a predictive power over roles, apart from

speakers. Following a similar idea as in (Damnati & Charlet, 2011a), we build an acoustic model

(AM) for each one of the N roles. The AM for a role is a gaussian mixture model (GMM) fit on

the voiced frames of all the turns available in the training set which are labeled with that role. The

scores for the turn to be used during the test phase are again, as in the case of the SC algorithm,

the N per-frame log-likelihoods with respect to each GMM averaged over the voiced frames of the

turn.

1.3 Datasets

For this work, we evaluate our proposed method on two different corpora from the psychology

domain, featuring interactions between a clinician and a patient. The first corpus is composed

of motivational interviewing (MI)—a specific type of psychotherapy—sessions between a thera-

pist (T) and a client (Cl) collected from six independent clinical trials (ARC, ESPSB, ESB21,

CTT, iCHAMP, HMCBI; Atkins, Steyvers, Imel, & Smyth, 2014; Baer et al., 2009)3. We col-

lectively refer to those sessions as the MI corpus. In this study, we use 343 manually transcribed

sessions. The second corpus comprises autism diagnostic observation schedule (ADOS) assessments

between a psychologist (P) and a child (Ch) being evaluated for a pervasive developmental disorder

(PDD) (Lord et al., 2000). In this study, we use 273 manually transcribed sessions, with a minimum

duration of 2 min.

There is a limited number of sessions where there are more than two speakers involved. In

such cases, we do not take into account any turns not belonging to the clinician/patient for our

analysis. Additionally, there is a limited number of non-pure speaker turns, in the sense that the

manually annotated boundaries are not optimal and occasionally overlap. We chose to include such

turns in the analysis without any preprocessing, since in a real-world setting (i.e., after automatic

segmentation) such problems are impossible to completely avoid.

Some descriptive analysis for the two datasets is presented in Table 1.1. Unfortunately, the

exact total number of different clients is not available for the MI dataset. However, under the

3Motivational interviewing is studied extensively in Chapter 5.
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assumption that it is highly improbable for the same client to visit different therapists in the same

study, and having partial information available about the client identities, we made the train/test

split in a way that we are highly confident there is no overlap between speakers. Similarly, the

exact total number of psychologists is unknown for the ADOS corpus, but the data are collected

from two different clinics (in different cities) and we assume that the same clinician does not work

for both. So, the data from one clinic is used for training and from the other for testing.

Table 1.1: Descriptive analysis of the corpora used.

MI-train MI-test ADOS-train ADOS-test

#sessions 242 101 141 132
duration (mean) 27.24 min 33.14 min 3.67 min 3.67 min
duration (std) 14.40 min 17.42 min 1.34 min 1.65 min

duration-T/P 47.30 h 26.35 h 2.63 h 2.52 h
duration-Cl/Ch 52.96 h 25.87 h 2.97 h 2.98 h

#T/P 123 53 – –
#Cl/Ch – – 89 81

By duration-T/P and duration-Cl/Ch we denote the total duration of all the
speaker turns labeled as therapist/psychologist and client/child, respectively.
By #T/P and #Cl/Ch we denote the total number of different thera-
pists/psychologists and clients/children.

1.4 Experiments and Results

The two available datasets are split into train and test sets, as explained in Section 1.3, in a way

that, with high confidence, there are not overlapping speakers between the sets, in order to ensure

that the trained models indeed capture role-specific and not speaker-specific information. The train

set is only used to build the LMs and AMs described in Section 1.2.3 corresponding to the different

roles.

The LMs are 3-gram models trained (and later evaluated) using the SRILM toolkit (Stolcke,

2002) with manually derived transcriptions of the recordings. In order to ensure a large enough vo-

cabulary that minimizes the unseen words during the test phase, we interpolate those models with a

large background model—namely with the pruned version of the 3-gram model of cantab-TEDLIUM

(Williams, Prasad, Mrva, Ash, & Robinson, 2015)—giving a weight of 0.9 to the domain-specific

LM and 0.1 to the background one.
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The AMs are diagonal GMMs, modeling the frames of turns assigned to each role, where frames

are represented by 13-dimensional MFCCs. During training, we take into consideration only the

voiced frames, by applying to the initial speaker turns a simple, energy-based VAD algorithm, as

implemented in the Kaldi speech recognition toolkit (Povey et al., 2011). The same VAD algorithm

is applied during evaluation, as well as during the SC step, as explained in Section 1.2.2.

As a meta-classifier we are use a binary linear support vector machine (SVM), since we evaluate

on binary problems. All the results are based on a 5-fold cross-validation scheme on the data

allocated for testing in each dataset, where, as is the case for the initial train/test split, we use

all the available meta-data information to minimize any possible overlapping of speakers between

different folds. The reason we are adopting this approach and do not use the training part of the

datasets is that we do not want to pipe data already seen by the AMs and/or LMs to the SVM

training.

As the evaluation metric of SRR we use the misclassification rate (MR), defined as (D. Liu &

Kubala, 2004)

MR =
#misclassified frames

total #frames
=

∑
k I(Rk 6= R̂k)dk∑

k dk
(1.3)

where the summation is over all the speaker turns, Rk is the role assigned by the algorithm, R̂k is

the reference role, dk is the duration of the k-th turn, and I(·) is the indicator function.

In Figure 1.3 we can see how MR is affected by the number of Gaussians in the GMM-based

AM, when only the audio-based role recognizer is used. Based on that, we use 512 Gaussians for

the subsequent experiments both for the MI and the ADOS datasets.

In this work we do not report results for the piped architecture presented in Figure 1.1b using

an actual classification algorithm as the second step of the pipeline. Instead, in Table 1.2 we give

the best possible result with this architecture when using the SC algorithm that we have described.

Using a perfect classification algorithm for the SRR task at the speaker level, which we denote as

R†, the overall error of the system is always lower-bounded by the error of the SC algorithm itself.

So, the results reported in the SC+R†-piped column of the Table are in fact the MRs of the SC

algorithm.

The language-based and audio-based recognizers are evaluated when used independently (LM-

only and AM-only) and when used in the combined architecture presented in Figure 1.2 (SC+LM-
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Figure 1.3: SRR misclassification rate when using only the AM-based decision, as a function of the
number of Gaussians in the GMM.

Table 1.2: Misclassification rates (%) of the SC algorithm, the language-based recognizer
(LM), and the audio-based recognizer (AM), when used independently (only) or in a piped
(piped) or combined (comb) architecture for the task of SRR.

SC+R†
piped

LM
only

SC+LM
comb

AM
only

SC+AM
comb

AM+LM
comb

SC+AM+LM
comb

MI 3.59 9.49 2.76 35.45 3.66 9.17 2.71
ADOS 12.67 12.37 7.70 14.03 10.58 8.02 5.98

By R† an optimal, 0-error classification algorithm is denoted.

comb and SC+AM-comb). The results are reported in Table 1.2. As we can see, the LM-based

approach has a strong predictive power for both datasets, revealing differences in the linguistic

patterns between a clinical provider and a client or a child evaluated for PDD. When this is

combined with the SC algorithm which captures the speaker-specific differences within a single

session, the results are considerably better, compared not only to the independent classifiers, but

also to the piped architecture.

On the other hand, the AM approach does not behave in the same manner for the two datasets.

As expected, the acoustic characteristics of the children as a whole are different than those of the

adult clinicians. This is reflected in the AM-only results for the ADOS data, even though they

are still worse than the LM-only ones. This age distinction between the two different groups of

speakers does not exist in the MI dataset. So, although it seems from the results that there is

some non-negligible acoustic variability between the clinicians and the clients, the performance gap
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between the LM-only and the AM-only approaches is much larger for those data. When combined

with the SC algorithm the results are substantially better, because the meta-classifier is affected

by the more separated scores which are the output of the SC module. This notion of “separability”

is visually depicted in Figure 1.4 where we show how the outputs of the SC, LM, and AM modules

are distributed on the plane. It is of high interest that in the case of the ADOS dataset, because

of its very special nature, the exact same information (at the feature level) can be used to capture

both role-specific and speaker-specific variabilities in a way that if the two modules are combined

by our proposed architecture (SC+AM-comb), they can improve the overall performance as if they

carried complementary information.

As a final experiment, we combine the outputs of the LM- and the AM-based recognizers, again

using the linear SVM as the meta-classifier (AM+LM-comb) and we also combine all the three

constructed modules in an extended combined architecture (SC+AM+LM-comb). In this latter

case the meta-classifier gets 3 · 2 (in the general case 3N) inputs for each turn to be classified. We

note that the result of the optimal matching between SC and LM was the same as in between SC

and AM, so we did not encounter any conflict. When compared to the LM-only and the SC+LM-

comb results, the addition of the acoustic-based recognizer in the architecture does not lead to any

substantial improvements, as expected, for the MI data, but does improve the performance of the

system for the case of the ADOS sessions. Overall, the relative error improvement with our final

system which follows the combined architecture is 24.5% for the MI data and 52.8% for the ADOS

data, when compared to the piped architecture with an optimal recognizer.

1.5 Conclusion

In this chapter we proposed a framework to incorporate speaker-specific and role-specific infor-

mation for the SRR task, by independently implementing an unsupervised SC algorithm and a

supervised turn-level role classifier, the output scores of which are fed to a meta-classifier which

gives a turn-level final decision. By evaluating our method on dyadic interactions we showed that it

yields superior results, compared both to the independent use of turn-level classifiers which do not

take speaker-specific variabilities into account, and to systems that use speaker-specific information

by applying SC as a first step and predicting the output at the speaker level.
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Figure 1.4: Distribution of the scores which are the output of the SC ((a),(b)), the LM-based
recognizer ((c),(d)), and the AM-based recognizer ((e),(f)) for the MI ((a),(c),(e)) and the ADOS
((b),(d),(f)) datasets. Each data point is a speaker turn with size proportional to the turn length.
300 turns of the test set are randomly shown for each dataset. xa and xt are the acoustic and
textual representation of a turn x. LMR and AMR are the LM and AM corresponding to the role
R. GR is the Gaussian corresponding to the role R at the end of the SC and after an optimal
matching between speakers and roles.
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One drawback of our methodology is that it requires additional data for the training of the

meta-classifier. Moreover, in a real-world scenario, the speaker boundaries, as well as the language-

based features, would be extracted, at least at the evaluation phase, from diarization and automatic

speech recognition (ASR) outputs, which can lead to error propagation. In the following chapter,

we will explore a technique to mitigate such potential error propagation due to ASR.
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Chapter 2

Role Specific Lattice Rescoring for

Speaker Role Recognition from

Speech Recognition Outputs

As shown in the previous chapter, the language patterns followed by different speakers who

play specific roles in conversational interactions provide valuable cues for the task of speaker role

recognition (SRR). Given the speech signal, existing algorithms typically try to find such patterns

either in manually derived transcripts or in the best path of an automatic speech recognition

(ASR) system. In this chapter we propose an alternative way of revealing role-specific linguistic

characteristics, by making use of role-specific ASR outputs, which are built by suitably rescoring

the lattice produced after a first pass of ASR decoding. That way, we avoid pruning the lattice too

early, eliminating the potential risk of information loss.

The work presented in this chapter has been published in (Flemotomos, Georgiou, & Narayanan, 2019).
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2.1 Introduction

In Chapter 1 we introduced the problem of SRR, defined as the classification task of mapping

a speaker-homogeneous segment (speaker turn) to an element of a predefined set of roles, where

a role is characterized by the task a speaker performs and the objectives related to it. Typical

examples of conversational interactions between individuals with specific roles are business meetings

(Sapru & Valente, 2012), broadcast news programs (Bigot et al., 2013; Damnati & Charlet, 2011a),

psychotherapy sessions (Xiao, Huang, et al., 2016), or press conferences (Li et al., 2017).

In order to address the problem of SRR, appropriate features which capture distinguishable

patterns between the different roles have to be extracted. Such patterns can be found in the

acoustic (Bigot, Pinquier, Ferrané, & André-Obrecht, 2010), lexical (Garg et al., 2008), prosodic

(Sapru & Valente, 2012), or structural (Li et al., 2017; Salamin & Vinciarelli, 2012) characteristics

of the speech signal, with the importance of each modality being task-specific. For instance, it

is desired that a psychotherapist speaks less than the client, an interviewer is expected to use

more interrogative words than the interviewee, etc. However, as validated by our experiments in

Chapter 1 where we explored linguistic and acoustic characteristics, it seems that language often

carries the most important information for the problem in hand (Damnati & Charlet, 2011a; Sapru

& Valente, 2012; W. Wang et al., 2011) and is more robust to unseen conditions (e.g., different

speakers) (Rouvier et al., 2015), which is the reason why a great portion of the research efforts has

been focused on studying and exploiting the lexical variability between the speaker roles.

The first efforts in the field extract bags of n-grams to represent the lexical information and use

them as input features to boosting algorithms or maximum entropy classifiers (Barzilay et al., 2000;

Y. Liu, 2006). Boosting approaches have been also followed by W. Wang et al. (2011) and Sapru

and Valente (2012) to combine n-gram features with other modalities, with the final classification

decision taken either at the speaker (W. Wang et al., 2011) or at the turn level (Sapru & Valente,

2012). Bazillon et al. (2011) first classify the types of questions posed by the different speakers and

use that information for the role assignment. Rouvier et al. (2015) explore deep learning approaches

by using word embeddings as inputs to convolutional neural networks. Xiao, Huang, et al. (2016)

build role-specific n-gram LMs and reduce SRR to the problem of finding the LM which minimizes

the perplexity of a speaker turn (or of all the turns assigned to a specific speaker after a speaker
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clustering step)1.

Although a bulk of the aforementioned studies use manually transcribed speech data to perform

SRR, in a real-world application the lexical information would become available after an ASR

step (Rouvier et al., 2015; Xiao, Huang, et al., 2016). Moreover, Damnati and Charlet (2011b)

suggest that the quality of ASR transcripts can be used to extract additional features carrying

complementary information in specific scenarios. In any case, the ASR output is considered to be

the best path of a system that uses generic acoustic and language models.

In this chapter, we propose using role-specific ASR systems, each one of which gives a potentially

different output together with a corresponding cost. Then, after passing any given turn through

all the systems, we can assign to that turn the role which corresponds to the system producing

the minimum cost. In particular, for this study, we create the role-specific systems by rescoring

the lattices generated by a generic ASR with role-specific LMs, as explained in Section 2.3. That

way, we can exploit any information carried by the decoding lattice before pruning it to find

the best path. Based on similar intuitions, Georgiou, Black, Lammert, Baucom, and Narayanan

(2011a) and Xiao, Huang, et al. (2016) have previously explored lattice rescoring techniques for

binary classification problems in the field of behavioral code prediction. Our method is evaluated

on dyadic interactions from the clinical domain, as well as on multi-participant business meeting

scenarios, yielding improved results for the task of SRR.

2.2 Background

In this section we give an overview of speech lattices and lattice rescoring. In order to better

understand lattices, we first explain what a decoding graph is, within the framework of weighted

finite state transducers (WFSTs).

1This is the baseline SRR approach we followed for our experimentation in the previous chapter, as detailed in
Section 1.2.3
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2.2.1 Weighted Finite State Transducers

Job of a WFST is to transform (or transduce) an input sequence into another output sequence,

where the input and output sets of labels (alphabets) may differ2 (Hori & Nakamura, 2013; Mohri,

Pereira, & Riley, 2002). Every WFST is associated with some semiring, that enables us to perform

various algebraic operations on it. The formal definition of a semiring is given below (Kuich &

Salomaa, 1986):

Definition 1. A semiring, denoted as < A,⊕,⊗, 0̄, 1̄ >, consists of a set A with two binary opera-

tions ⊕ and ⊗ and two constants 0̄ and 1̄, such that the following axioms are satisfied:

(i) a⊕ 0̄ = 0̄⊕ a = a ∀a ∈ A,

(ii) a⊗ 1̄ = 1̄⊗ a = a ∀a ∈ A,

(iii) commutativity for ⊕: a⊕ b = b⊕ a ∀a ∈ A, ∀b ∈ A,

(iv) distributivity:

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) ∀a ∈ A, ∀b ∈ A, ∀c ∈ A,

(v) 0̄⊗ a = a⊗ 0̄ = 0̄ ∀a ∈ A

WFSTs can be viewed as directed graphs where each edge represents a transition between two

states. During a transition t, an input symbol (or the empty symbol) is converted to an output

symbol (ot the empty symbol) with some weight w(t) ∈ W, where W is the set of a semiring. A

valid path π is a sequence of finite successive transitions t1, t2, · · · , tn from an initial state3 to a

final state f , associated with some weight w(f). The total cost of the path is

w(π) = w(t1)⊗ w(t2)⊗ · · · ⊗ w(tn)⊗ w(f) (2.1)

For the task of speech recognition, weights are typically negative log probabilities and the tropical

semiring < R+ ∪ {∞},min,+,∞, 0 > is the most widely used one.

2If there is no new output (or input and output are always the same), we have a weighted finite state acceptor
(WFSA).

3We can safely assume that every WFST has a single initial state.
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One of the most common operations defined on WFSTs is the binary operation of composition.

Given two WFSTs T1 and T2, their composition T is a WFST that transforms an input sequence

x into an output sequence y according to the formula

T (x, y) = (T1 ◦ T2)(x, y) ,
⊕
z

T1(x, z)⊗ T2(z, y) (2.2)

2.2.2 WFST framework for speech recognition

Given a sequence of acoustic features O, the job of an ASR system from a traditional point of view4

is to find, out of the set W of possible word sequences, the most probable sequence

Ŵ = argmax
W∈W

P (W |O) = argmax
W∈W

P (O|W )P (W ) (2.3)

where P (O|W ) is the acoustic likelihood of O for W , estimated through the acoustic model (AM),

and P (W ) is the prior probability of W , estimated through a language model (LM). If the pronun-

ciation lexicon mapping words to subword units (SUs) contains the additional information of how

probable an SU sequence V is, given the word W , then we get

Ŵ = argmax
W∈W

∑
V ∈K(W )

P (O|V,W )P (V |W )P (W ) ≈ argmax
W∈W

∑
V ∈K(W )

P (O|V )P (V |W )P (W ) (2.4)

where K(W ) is the set of the possible SU-level representations of W . Since decoding is based on

the Viterbi algorithm, the summation is replaced by a max function and finally we get in the log

domain

Ŵ ≈ argmax
W∈W

max
V ∈K(W )

{logP (O|V ) + logP (V |W ) + logP (W )} (2.5)

In the WFST framework, we have the transducer H̃ that transforms a sequence of acoustic

features O into an SU sequence V with a weight − logP (O|V ), the WFST L that transforms an SU

sequence V into a word sequence W with a weight − logP (V |W ), and the WFSA G that accepts

a word sequence W with a weight − logP (W ) (Hori & Nakamura, 2013; Mohri et al., 2002). H̃ is

actually split into a WFST H that transforms a sequence of hidden markov model (HMM) states

4as opposed to the end-to-end neural approaches
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into an SU sequence and a model S that maps the acoustic observations to HMM states and is

trained following either the GMM or the DNN paradigm. Since typically the elementary SUs in

ASR are triphones and the pronunciation lexicons give the phoneme-level representation of each

word, it is necessary to have one more WFST C that transforms a triphone sequence into a phoneme

sequence, where each phoneme is context-independent and is identical to the central phoneme of

the corresponding triphone. Those automata are composed into a final WFST5

N = H ◦ C ◦ L ◦G (2.6)

Given any speech utterance x of t frames, we construct the WFSA Tx that represents x (with t+ 1

nodes and one arc between consecutive nodes for each HMM state) and ASR is now a shortest path

problem on Tx ◦N , called the decoding search graph for the specific utterance.

2.2.3 Speech lattices

Conventional ASR systems try to find the shortest path on the decoding graph, such that a sequence

of HMM states is transduced to a word sequence with the minimum possible cost. In many cases,

however, it is desirable to keep multiple sufficiently probable transcription hypotheses, and not only

the best one. This can be done either by keeping a list of n-best sequences, or by generating a speech

recognition lattice. A lattice is a weighted directed acyclic graph (and thus, can be represented as a

WFSA) with word labels (Ljolje, Pereira, & Riley, 1999). Each valid path represents an alternative

word sequence, weighted by its recognition cost, and an exponential number of such word sequences

can be encoded with respect to the number of nodes in the lattice. An example of a word lattice

is given in Figure 2.1.

Time and alignment information is also usually included in the lattice. According to Povey et

al. (2012), given some cost tolerance δ, any lattice should satisfy the following conditions:

(i) There should be one path for every word sequence within δ from the one with the minimum

total cost,

5In practice, optimization operations need to be applied before the final composition (Mohri et al., 2002).
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sil
recognize

wreck

speech using common

calm

sense sil

a nice beach using incense sil

Figure 2.1: Example of speech recognition lattice encoding four alternative transcription hypothe-
ses. For simplicity, no scores or alignments are shown.

(ii) there should only be one path for any distinct word sequence (no duplicate paths allowed),

(iii) the scores and alignments in the lattice should be accurate.

2.2.4 Lattice rescoring

One of the main reasons it is desirable to generate lattices during decoding is so that we can

later process them and rescore them with more complex, or domain-specific, models. For example,

a lattice can be rescored to infuse knowledge-based information (Siniscalchi, Li, & Lee, 2006).

Another common scenario is when a relatively simple language model is used during first-pass

decoding due to lower computational complexity and the generated lattice is later rescored with a

better language model to improve accuracy (Sak, Saraçlar, & Güngör, 2010; Xu et al., 2018).

One of the simplest ways to rescore a lattice is through composition (Povey et al., 2012).

Essentially, for LM-rescoring, which is the focus of this study, we want to subtract the old LM cost

and add the new LM cost to the weighted automaton representing the lattice. According to the

analysis in Section 2.2.2, the lattice should include two scores; the graph cost corresponding to the

weight of the WFST N (which, based on equation (2.6), incorporates the LM cost from G, the

pronunciation cost from L, and the HMM-transitions-related cost from H) and the acoustic cost

corresponding to the model S. Storing each weight on the lattice as a pair of graph and acoustic

weights (wgr, wac), the lattice LGnew(x) for an utterance x, after rescoring with an LM Gnew, can

be expressed as

LGnew(x) =
(
L†Gold

(x) ◦Gold

)†
◦Gnew (2.7)

where LGold
(x) is the lattice generated using the old LM Gold and † represents the operation of

scaling both the graph and acoustic lattice costs multiplying by −1. For Gold and Gnew the weights
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are of the form (w, 0). A semiring similar to the tropical semiring on wgr + wac can be used

for lattices, but keeping track of the graph and acoustic weights separately. More precisely, the

semiring used is equipped with the following operations:

• (wgr1 , wac1)⊗ (wgr2 , wac2) = (wgr1 + wgr2 , wac1 + wac2)

• (wgr1 , wac1)⊕ (wgr2 , wac2) =

 (wgr1 , wac1), if wgr1 + wac1 < wgr2 + wac2

(wgr2 , wac2), if wgr1 + wac1 > wgr2 + wac2

Ties in the latter case are broken comparing wgr1 − wac1 vs. wgr2 − wac2
6.

2.3 Proposed Method

Given a generic ASR system, the goal is to convert the generated decoding lattice for an input turn

to multiple, role-specific versions, in such a way that there is one version that reflects the speaker

role corresponding to the particular turn. We do this by rescoring the lattice N times, where N

is the number of roles, with role-specific LMs. Let’s assume we have a background, out-of-domain

n-gram LM G and N role-specific LMs R1,R2, · · · ,RN corresponding to the roles R1, R2, · · · , RN ,

which are trained using in-domain data. First, we ensure that all the models which are going to

be used recognize the same vocabulary. We can efficiently do so by interpolating the individual

LMs to get the mixed models G+,R+
1 ,R+

2 , · · · ,R+
N . To obtain an interpolated model, we assign

to each n-gram the weighted average of the probabilities from the input models, and we then we

re-normalize the produced model (Stolcke, 2002). Using the symbol � to denote LM interpolation,

the final models are expressed as

G+ = wgG � (1− wg)R̃ (2.8)

R+
i = wgiG � wriRi � (1− wgi − wri)R̃i (2.9)

6For more details, please refer to (Povey et al., 2012) and to the Kaldi documentation at https://kaldi-asr.org/
doc/lattices.html.
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where

R̃ =
1

N

N⊙
i=1

Ri, R̃i =
1

N − 1

N⊙
j=1
j 6=i

Rj

and all the weights wg, wgi , wri are chosen to minimize the perplexity of appropriate role-specific

development corpora.

Given an input turn x, we first pass it through an ASR system, trained with the LM G+, pro-

ducing a decoding lattice LG+(x). The lattice is then rescored with all the LMs R+
j , j = 1, 2, · · · , N

to produce the lattices LR+
j

(x). Denoting as cj(x) the LM cost of the best path in LR+
j

(x), the

role assigned to x is Rm where m = argminj cj(x). The process is visually depicted in Figure 2.2.

The difference between this approach and the language-based approach followed in Chapter 1 is

that in the second case the evaluation with respect to a role-specific LM would be done using the

final output of the ASR, as presented in Figure 2.3. That way, the lattice LG+(x) is pruned using

a generic LM, which can potentially lead to loss of valuable information for the task of SRR. This

is exactly the problem our approach tries to avoid.

ASR
with G+

LG+(x)

rescore

with R+
1

x

...

LR+
1
(x)

best path

c1(x)

argminj

rescore

with R+
N

LR+
N
(x)

best path

cN (x)

rescore
with R+

j

LR+
j
(x)

best path

...

cj(x)

m
Rm

......

Figure 2.2: Turn-level SRR by role-specific lattice rescoring.

If the extra information of the speaker who uttered the turn is available, after a speaker clus-

tering step, then the role assignment can be done more robustly at the speaker level instead of the
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ASR
with G+

LG+(x)

evaluate
with R+

1

x

...

c′1(x)

argminj

evaluate
with R+

N

c′N (x)

evaluate
with R+

j

best path

...

c′j(x)

m Rm

Figure 2.3: Turn-level SRR by evaluating the text with role-specific LMs.

turn level, as we already saw in Chapter 1. If we denote by Ti the set of turns corresponding to

speaker Si, we can define the cost of the speaker-role pair (Si, Rj) as

c(Si|Rj) ,
∑
x∈Ti

cj(x) (2.10)

Ideally, we would again like to assign to any speaker Si the role Rm such that the cost c(Si|Rm)

is the minimum among all c(Si|Rj), j = 1, 2, · · · , N . However, assuming that there is one-to-

one correspondence between speakers and roles in a speech document, which is the case for many

practical applications, this criterion would fail, since there is no guarantee that for n 6= m we have

argminj c(Sn|Rj) 6= argminj c(Sm|Rj).

Thus, in order to take such a constraint into account, we use Algorithm 1, which is a general-

ization of the role matching criterion we proposed in (Flemotomos, Martinez, et al., 2018) for the

2-speaker scenario, where the costs were perplexities. The algorithm begins with the entire sets

S̃ and R̃ of the available speakers and roles and at every iteration it chooses the speaker Sk such

that a confidence metric Ck is the maximum among all Ci, i = 1, 2, · · · , |S̃|. Then, it assigns to Sk

the role Rlk that minimizes the cost c(Sk|Rj), j = 1, 2, · · · , |R̃| and removes Sk and Rlk from the

available speakers and roles. The confidence metric Ci is designed in such a way that the larger

the difference between the minimum cost and the rest of the costs for Si is, the more confident we

are about the role assignment of the particular speaker.
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Algorithm 1 Speaker-level SRR given costs for each (speaker,role) pair.

Inputs: speakers S1, S2, · · · , SN
roles R1, R2, · · · , RN

costs c(Si|Rj)∀i, j

S̃ ← {Si}Ni=1; R̃← {Ri}Ni=1

while S̃ 6= φ do
for Si ∈ S̃ do

li ← argminm c(Si|Rm), Rm∈R̃
Ci ← minn |c(Si|Rli)− c(Si|Rn)|, Rn∈R̃ \ {Rli}

end for
k ← argmaxiCi

assign Rlk to Sk
S̃ ← S̃ \ {Sk}; R̃← R̃ \ {Rlk}

end while

2.4 Datasets

We evaluate our method on two datasets featuring interactions between individuals under differ-

ent conditions. The first dataset, to which we will refer as the PSYCH corpus, is composed of

motivational interviewing sessions between a therapist (T) and a client (C) and is collected from

five independent clinical trials (ARC, ESPSB, ESP21, iCHAMP, HMCBI; Atkins et al., 2014)7.

The second one is the AMI meeting corpus (Carletta et al., 2005) from which we use the inde-

pendent headset microphone (IHM) setup of the scenario-only part. This is composed of meetings

where each participant plays the role of an employee in a company; the project manager (PM), the

marketing expert (ME), the user interface designer (UI), and the industrial designer (ID).

The two datasets are split into training, development and test sets in such a way that there is

no speaker overlap between them. For the AMI corpus we follow the scenario-only partition which

is officially recommended8. For the PSYCH corpus, since the client identities are not available for

the HMCBI sessions, the partitioning is done under the assumption that it is highly improbable for

the same client to visit different therapists in the same study, as explained in Chapter 1. In both

cases, we use the manually derived segmentation. The datasets are presented in Tables 2.1 and 2.2.

7Note that this is a subset of the MI dataset used in Chapter 1, described in Table 1.1. In particular here we do
not use the 200 CTT sessions (Baer et al., 2009). Those feature scripted interactions between actors playing the roles
of therapist vs. patient; here we only consider real-world clinical interactions.

8https://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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Table 2.1: Size of the PSYCH dataset.

PSYCH-train PSYCH-dev PSYCH-test

#sessions 74 44 25

duration-T 26.43 h 15.23 h 7.34 h
duration-C 23.29 h 12.17 h 7.54 h

Durations are calculated based on manual turn boundaries.

Table 2.2: Size of the AMI dataset.

AMI-train AMI-dev AMI-test

#meetings 98 20 20

duration-PM 16.00 h 2.95 h 3.93 h
duration-ME 10.22 h 2.61 h 2.51 h
duration-UI 9.71 h 2.26 h 1.79 h
duration-ID 11.03 h 2.02 h 2.15 h

Durations are calculated based on manual turn boundaries.

In order to train the required LMs we use the training parts of the PSYCH and AMI corpora,

as well as the Fisher English corpus (Cieri, Miller, & Walker, 2004) and the transcribed therapy

sessions provided by the counseling and psychotherapy transcripts series9 (CPTS), as described in

Section 2.5. The size of the corresponding vocabularies and the total number of tokens are given

in Table 2.3.

Table 2.3: Size of the vocabulary and total number of tokens in the
corpora used for LM training.

PSYCH-train AMI-train Fisher CPTS

vocabulary size 8.17K 8.54K 58.6K 35.6K
#tokens 530K 479K 21.0M 6.52M

2.5 Experiments and Results

First, we train all the necessary LMs, which are 3-gram models with Kneser-Ney smoothing. The

generic LM G is trained using the Fisher English corpus. For the AMI corpus, the 4 role-specific LMs

9https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series
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RPM ,RME ,RUI ,RID are trained using only the turns belonging to the corresponding roles in the

training set. For the PSYCH corpus, we additionally use the CPTS sessions and get the role-specific

LMs RT = woTRT,CPTS ⊕ (1−woT )RT,PSY CH and similarly for RC . The mixing weights woT and

woC are optimized so that the perplexity of the turns of the corresponding roles in the development

set is minimized. Once we have those LMs, we create the mixed versions according to equations (2.8)

and (2.9), where all the appearing mixing weights are again optimized to minimize the perplexity

of the development corpora. For the optimization of wg, the corresponding development corpus

is the union of all the role-specific development corpora for the dataset we work with. The LM

training and weight optimization is done with the SRILM toolkit (Stolcke, 2002). The size of the

final mixed vocabulary is 69.5K for the experiments with the PSYCH corpus and 59.6K for the

experiments with the AMI corpus, while the phonetic representation of those words is given by the

CMU dictionary10.

The ASR decoding is done with the Kaldi speech recognition toolkit (Povey et al., 2011) using

Kaldi’s pre-trained ASpIRE acoustic model11. The word insertion penalty and the LM weighting

factor used during decoding are chosen to minimize the word error rate (WER) on the development

set. The evaluation metric used for the final role assignment is the misclassification rate (MR), as

defined in equation (1.3).

2.5.1 Turn-level SRR

In Table 2.4 we present the results using our method (lm-resc) for turn-level (tl) SRR, as shown in

Figure 2.2, as well as using the approach shown in Figure 2.3 (lm-asr) where the cost c′j(x) is the

log-likelihood of the turn x given the LM R+
j .

As we can see, both lm-resc-tl and lm-asr-tl fail to beat the baseline classifier which always

chooses the majority class (from the training set) for the case of AMI corpus. For the 2-role problem

in PSYCH corpus this is not the case, but still lm-asr-tl outperforms lm-resc-tl. This is because

the corpora feature conversational interactions and thus, prior to speaker clustering, utterances are

broken into very short speech segments. Each individual segment contains insufficient observations

10https://github.com/cmusphinx/cmudict
11https://kaldi-asr.org/models/m1
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Table 2.4: MR (%) for turn-level SRR.

lm-resc-tl lm-asr-tl maj. class

PSYCH 23.58 10.75 50.67
AMI 64.70 63.40 62.22

lm-resc-tl refers to the system of Figure 2.2.
lm-asr-tl refers to the system of Figure 2.3.

to infer speaker role, and since all decisions are independent, that increases error. Such inaccuracies

cancel out when we exploit the aggregate score for all the turns of a speaker as we will see in the

following section.

2.5.2 Speaker-level SRR

Here, the final decision of the role assignment is taken at the speaker level, according to Algorithm 1,

which means that a speaker clustering step is required. To that end, a BIC-based HAC is employed

on top of an energy-based voice activity detector at the frame level, like in Chapter 1. In order for

the clustering to make sense in the case of the AMI corpus, we downmix the 4 headset microphones

into one audiofile per meeting. As observed in Table 2.5, our method (lm-resc-sl) yields improved

results, outperforming both lm-asr-sl and the turn-level approaches (Table 2.4). Of course, the

final performance depends on the performance of the clustering algorithm used.

Table 2.5: MR (%) for speaker-level (sl) SRR and
for speaker clustering (BIC-HAC).

lm-resc-sl lm-asr-sl BIC-HAC

PSYCH† 0.00 7.46 –
PSYCH 4.41 5.83 4.08
AMI† 29.46 55.52 –
AMI 46.16 60.94 15.63

† denotes the use of ground truth speaker clustering in-
formation.

2.5.3 Effect on speech recognition accuracy

Finally, we want to explore whether the role-specific lattice rescoring can lead to improved results

for the task of ASR apart from SRR. To that end, for every turn we assume that the lexical

information is given by the best path of the rescored lattice corresponding to the role that was
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assigned by our algorithm to that turn. The results in Table 2.6 show that this approach, following

our per-speaker role assignment, can indeed slightly improve the ASR performance. The slight

difference between the WER of the generic ASR model and the combination of the rescored ones,

together with the substantial improvements in SRR performance (Table 2.5) suggest that even small

role-specific improvements in the text produced by the ASR can be of high value for a reliable role

identification.

Table 2.6: WER (%) using the best path of a
generic lattice or role-specific rescored lattices.

lm-resc-tl lm-resc-sl generic

PSYCH 37.84 37.54 37.99
AMI 29.35 29.27 29.29

2.6 Conclusion

Here we presented an algorithm that rescores the lattices produced by an ASR system with role-

specific LMs in order to exploit the linguistic information in a more robust way for the task of SRR.

We experimented with approaches taking the final decision both at the turn and at the speaker level

and we identified that the second case leads to more reliable results. This chapter concludes our

analysis on how to robustly extract speaker roles from the speech signal. In Chapters 3 and 4 we

will focus on how to use the role information in order to improve the performance of a fundamental

speech processing task, that of speaker diarization. There, we are going to use weaker approaches

to extract speaker roles (since we will do so at the turn level for only a few turns) and for that

reason we will employ specific confidence criteria.
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Part II

Using Speaker Roles

36



Chapter 3

Linguistically Aided Speaker

Diarization Using Speaker Role

Information

In the previous chapter we demonstrated how to infer speaker roles from speech recognition

outputs and additionally showed that speaker role information can improve the performance of an

ASR system. In this chapter, we utilize speaker roles to facilitate another speech processing task,

namely speaker diarization. This task relies on the assumption that speech segments corresponding

to a particular speaker are concentrated in a specific region of the speaker space; a region which

represents that speaker’s identity. These identities are not known a priori, so a clustering algorithm

is typically employed, traditionally based solely on audio. Under noisy conditions, however, such an

approach poses the risk of generating unreliable speaker clusters. Here we aim to utilize linguistic

information as a supplemental modality to identify the various speakers in a more robust way. In

particular, we show that the different linguistic patterns that speakers are expected to follow in

role-based conversational scenarios can help us construct the speaker identities. That way, we are

able to boost diarization performance by converting the clustering task to a classification one.

The work presented in this chapter has been published in (Flemotomos, Georgiou, & Narayanan, 2020).
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3.1 Introduction

Given a speech signal with multiple speakers, diarization answers the question “who spoke when”

(Anguera et al., 2012). To address the problem, the main underlying idea is that speech segments

corresponding to some speaker share common characteristics which are ideally unique to the par-

ticular person. So, the problem is usually reduced to finding a suitable representation of the signal

and a reliable distance metric. Under this viewpoint, when the distance between two speech seg-

ments is beyond a certain threshold, they are considered to belong to different speakers. The job

of a speaker diarization system is visually depicted in Figure 3.1.

(a) Raw signal.

(b) Diarization output.

Figure 3.1: Finding “who spoke when” in a speech signal. In (b), the white regions indicate silence
or noise. The 5 detected (colored) speech regions are further segmented into 7 speaker-homogeneous
segments which are clustered into 3 same-speaker groups.

In the conventional diarization approach, the input signal is first segmented either uniformly

(e.g., Sell et al., 2018) or according to a speaker change detection algorithm (e.g., Zajıc, Kunešová,

Zelinka, & Hrúz, 2018). In either case, it is assumed that a single speaker is present in each one

of the resulting segments. Since diarization is typically viewed as an unsupervised task, it heavily

depends on the successful application of a clustering algorithm in order to group same-speaker
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segments together. Such a method, however, poses the risk of creating noisy, non-representative

speaker clusters. In particular, if the speakers to be clustered reside closely in the speaker space,

some speakers may be merged. Additionally, if there is enough noise and/or silence within a

recording (possibly not sufficiently captured by a voice activity detection algorithm), it may be

the case that one of the constructed clusters only contains the non-speech or distorted-speech

segments. This behavior can lead to poor performance even if the exact number of speakers is

known in advance.

Even though speaker diarization has traditionally been an audio-only task which relies on the

acoustic variability between different speakers, the linguistic content captured in the speech signal

can offer valuable supplementary cues. Apart from practical observations such as the fact that it is

highly improbable for a speaker change point to be located within a word (Dimitriadis & Fousek,

2017; Silovsky, Zdansky, Nouza, Cerva, & Prazak, 2012), it is widely accepted that each individual

has their very own way of using language (Johnstone, 1996). Thus, language patterns followed by

individual speakers have been explored in the literature for the tasks of speaker segmentation and

clustering, both when used unimodally (Meng, Mou, & Jin, 2017), and in combination with the

speech audio (India Massana, Rodŕıguez Fonollosa, & Hernando Pericás, 2017; Park & Georgiou,

2018; Park, Han, Huang, et al., 2019; Zaj́ıc, Soutner, Hrúz, Müller, & Radová, 2018).

Despite the beneficial effects of using language as an additional stream of information, there is

an important practical consideration: how to get access to the transcripts. In a real-world scenario,

a high-performing ASR system needs to be applied before any textual data is available. However,

speaker diarization is widely viewed as a pre-processing step of multi-talker ASR systems and is

often a module that precedes ASR in conversational speech processing pipelines (Huang, Marcheret,

Visweswariah, Libal, & Potamianos, 2007; Xiao, Huang, et al., 2016). This is because single-speaker

speech segments allow for speaker normalization techniques, including speaker adaptive training

through constrained maximum likelihood linear regression (CMLLR; Gales, 1998) and i-vector

based neural network adaptation (Saon, Soltau, Nahamoo, & Picheny, 2013). Nevertheless, taking

into consideration the error propagating from a non-ideal diarization system to the ASR output, it

is nowadays questionable whether diarization can in practice improve recognition accuracy, which is

why several modern pipelines start by applying ASR first, achieving state-of-the-art results (Park,

Han, Huang, et al., 2019; Yoshioka et al., 2019). In any case, if there are not major computational
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and/or time constraints, running a second pass of ASR after diarization could be a reasonable

approach1.

Following the aforementioned line of work, we propose an alternative way of using the linguistic

information for the task of speaker diarization in recordings where participants play specific roles

which are known in advance. In particular, we process the text stream independently in order to

segment it in speaker-homogeneous chunks (where only one speaker is active), each one of which

can be assigned to one of the available speaker roles. Aggregating this information for all the

segments, and aligning text with audio, we can construct the acoustic identities of the speakers

found in the recording. That way, each audio segment can be assigned to a speaker through a simple

classifier, overcoming the potential risks of clustering. We apply this approach in psychotherapy

recordings featuring dyadic interactions between two speakers with well-defined roles; namely those

of a therapist and a patient.

3.2 Background: Audio-Only Speaker Diarization

Speaker diarization is the process of partitioning a speech signal into speaker-homogeneous segments

and then grouping same-speaker segments together, without having prior information about the

speaker identities. Therefore, research effort has been focused on finding i) a representation that

can capture speaker-specific characteristics, and ii) a suitable distance metric that can separate

different speakers based on those characteristics. The traditional approach has been to model

speech segments under some probability distribution (e.g., GMMs), and measure the distance

between them using a metric such as the one based on the bayesian information criterion (BIC)

(S. Chen & Gopalakrishnan, 1998).

Speaker modeling by GMMs was later replaced by i-vectors (Shum, Dehak, Chuangsuwanich,

Reynolds, & Glass, 2011), fixed-dimensional embeddings inspired by the total variability model.

In this framework, the cosine distance metric was initially proposed as the divergence criterion to

be used, but probabilistic linear discriminant analysis (PLDA) based scoring (Ioffe, 2006; Prince

& Elder, 2007) was proved to yield improved results (Sell & Garcia-Romero, 2014). Given two

1In Chapter 5 we will see how diarization and ASR can be connected within a larger speech processing pipeline.
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embeddings v, r, PLDA provides a framework to estimate their similarity s(v, r) as the log-likelihood

ratio

s(v, r) = log
p(v, r|same speaker)

p(v|dif. speakers)p(r|dif. speakers)
(3.1)

In recent years, with the advent of deep neural networks (DNNs), the embeddings used are usu-

ally bottleneck features extracted from neural architectures. Such architectures are trained under

the objective of speaker classification, employing a cross-entropy loss function (Snyder, Garcia-

Romero, Sell, Povey, & Khudanpur, 2018), or under the objective of speaker discrimination em-

ploying contrastive (Garcia-Romero, Snyder, Sell, Povey, & McCree, 2017) and triplet (Bredin,

2017b) loss functions. Typical examples of embeddings that have shown state-of-the-art perfor-

mance for speaker diarization are the long-short term memory (LSTM) based d-vectors (Q. Wang,

Downey, Wan, Mansfield, & Moreno, 2018) and the time-delay neural net (TDNN) based x-vectors

(Sell et al., 2018), which are also the embeddings used for the work presented here. The first layers

of the architecture used to extract x-vectors operate at the frame level, with deeper layers seeing

longer temporal contexts. Then, a statistics pooling layer is used to collect the outputs of the last

layer of the TDNN and compute the mean and standard deviation vectors. The next few dense lay-

ers operate at the segment level before a softmax inference layer maps segments to speaker labels.

The activations of the first dense layer are selected as speaker embeddings.

Speaker diarization usually comprises two steps: first, the speech signal is segmented into single-

speaker chunks, and second, the resulting segments are clustered into same-speaker groups (Anguera

et al., 2012). Even though speaker change detection is by itself an active research field (Hrúz &

Zaj́ıc, 2017; Jati & Georgiou, 2017), it has been shown that it doesn’t necessarily lead to improved

results within the framework of diarization when compared to a uniform, sliding-window based

segmentation (Zaj́ıc, Kunešová, & Radová, 2016; Zajıc et al., 2018), so the latter method is widely

used. As far as the clustering is concerned, common approaches include hierarchical agglomerative

clustering (HAC; Sell et al., 2018) and spectral clustering (Park, Kumar, et al., 2019; Q. Wang et al.,

2018), while methods based on affinity propagation (Yin, Bredin, & Barras, 2018) and generative

adversarial networks (Pal et al., 2020) have also been proposed. In order to overcome some of the

problems connected with clustering, supervised systems that directly output a sequence of speaker

labels have been recently introduced (Fujita et al., 2019; Zhang, Wang, Zhu, Paisley, & Wang,

41



2019).

3.3 Proposed Method: Linguistically-Aided Speaker Diarization

Our proposed approach for speaker diarization in conversational interactions where speakers as-

sume specific roles is illustrated in Figure 3.2. We describe the various modules in detail in Sec-

tions 3.3.1–3.3.4.

segmentation
segment-level

role recognition
text

role LMs

profile
estimation

audio

uniform
segmentation

classification

Figure 3.2: Linguistically-aided speaker diarization using role information.

3.3.1 Text-based segmentation

Given the textual information of the conversation, our goal is to obtain speaker-homogeneous text

segments; that is segments where all the words have been uttered by a single speaker. Those will

later help us construct the desired acoustic speaker identities. Even though text-based speaker

change detectors have been proposed (Meng et al., 2017), for our final goal we can safely over seg-

ment the available document, provided this leads to a smaller number of segments containing more

than one speakers (Zaj́ıc et al., 2018). So, we assume that each sentence is with high probability

speaker-homogeneous and we instead segment at the sentence level.

To that end, the problem can be viewed as a sequence labeling one, where each word is tagged as

either being at the beginning of a sentence, or anywhere else. In particular, we address the problem

building a Bidirectional LSTM (BiLSTM) network with a conditional random field (CRF) inference

layer (Ma & Hovy, 2016), as shown in Figure 3.3. The input to the recurrent layers is a sequence

of words. Each word is given as a concatenation of a character-level representation predicted by

a CNN and a word embedding. For our experiments, we initialize the word embeddings with the
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extended dependency skip-gram embeddings (Komninos & Manandhar, 2016), pre-trained on 2B

words of Wikipedia. Those extend the semantic vector space representation of the word2vec model

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) considering not only spacial co-occurrences

of words within text, but also co-occurrences in a dependency parse graph. That way, they can

capture both functional and topic-related semantic properties of words.

CNN CNN CNN

h i M a r h e yy

Mary heyhi

BiLSTM

CRF

B BM

Figure 3.3: Neural network for sentence-level text segmentation: A character representation is
constructed for each word through a CNN and is concatenated with a word embedding (here shown
in grey). This is the input to a BiLSTM-CRF architecture which predicts a sequence of labels.
Here B denotes a word at the beginning of a sentence and M in the middle (any word which is not
the first one of a sentence).

3.3.2 Role recognition

The next step in our system is the application of a text-based role recognition module. In more

detail, assuming we have N speakers in the session (N = 2 for our experiments) and there is one-

to-one correspondence between speakers and roles (e.g., there is one therapist and one patient), we

want to assign one of the role labels {Ri}Ni=1 to each segment. To do so, we build N LMs {R+
i }Ni=1,

one for each role, and we estimate the perplexity of a segment given the LM R+
i , for i = 1, 2, · · · , N .

The role assigned to the segment is the one yielding the minimum perplexity like in Chapters 1

and 2. We note that in our experiments all the perplexities are normalized for segment length.

The required role-specific LMs are n-gram models built as described in Chapter 2, Section 2.3.

For this process, we assume that in-domain text data is available for training. We first construct

a background, out-of-domain LM G and N role-specific LMs {Ri}Ni=1. G is used to ensure a large
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enough vocabulary that minimizes the unseen words during the test phase. Those individual LMs

are interpolated to get the mixed models {R+
i }Ni=1

2.

3.3.3 Profile estimation

After applying the text-based segmenter and role recognizer, we have several text segments corre-

sponding to each role Ri. If we have the alignment information at the word level3, we can directly

get the time-boundaries of those segments. We extract one embedding (x-vector) for each and we

estimate a role identity ri as the mean of all the embeddings corresponding to the specific role.

Under the assumption of one-to-one correspondence between speakers and roles that we already

introduced in Section 3.3.2, those role identities are at the same time the acoustic identities (also

known as profiles) of the speakers appearing in the initial recording.

We note that role recognition at the segment level does not always provide robust results as

explained in the previous chapters, something which could lead to unreliable generated profiles.

However, we expect that there will be a fraction of the segments for the results of which we are

confident enough and we can take only those into consideration for the final averaging. The proxy

used as our confidence for the segment-level role assignment is the difference between the best and

the second best perplexity of a segment given the various LMs, similarly to the confidence introduced

in Algorithm 1 (Chapter 2). Formally, if segment x is assigned the role Ri, and if pp(x|R+
i ) is the

perplexity of x given the LM R+
i , then the confidence metric used for this assignment is

cx = min
j 6=i
|pp(x|R+

j )− pp(x|R+
i )| (3.2)

Then, the corresponding profile is

ri =

∑
x∈Ri

c̃xux∑
x∈Ri

c̃x
,

∑
x∈Ri

I{cx > θ}ux∑
x∈Ri

I{cx > θ} (3.3)

where ux is the x-vector for segment x, I{·} is the indicator function, θ is a tunable parameter.

2For more details, please refer to equations (2.8)–(2.9).
3If we have access to the transcripts and the audio, we can force-align. If we generate the text through ASR, we

get the desired alignments from the decoding lattices.
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3.3.4 Audio segmentation and classification

After having computed all the needed profiles {ri}Ni=1, in order to perform speaker diarization, we

first segment the audio stream of the speech signal uniformly with a short sliding window, a typical

approach in audio-only diarization systems. In other words, the language information is used by

our framework only to construct the speaker profiles, with the final diarization result relying on

audio-based segmentation, as illustrated in Figure 3.2. For each one of the resulting segments an

x-vector is extracted. However, instead of clustering the x-vectors, we now classify them within the

correct speaker/role. In order to have a fair comparison between common diarization baselines and

our proposed system, our classifier is based on PLDA, but we note that any other classifier could

be employed instead. In this framework, a segment x with embedding ux is assigned the label

R̂x = argmax
1≤i≤N

{s(ux, ri)} (3.4)

where s(·, ·) is the PLDA similarity score estimated in equation (3.1).

3.4 Datasets

3.4.1 Evaluation data

We evaluate our proposed method on datasets from the clinical psychology domain. In particular,

we apply the system to the motivational interviewing sessions introduced in the previous chapters,

and specifically the PSYCH corpus described in Table 2.1. As explained there, the train/dev/eval

split has been done in such a way that there is no speaker overlap between the subsets. All the

results reported are on PSYCH-test.

3.4.2 Segmenter and role LM training data

The segmenter presented in Section 3.3.1 is trained on a subset of the Fisher English corpus (Cieri et

al., 2004) comprising a total of 10,195 telephone conversations for which the original transcriptions

(including punctuation symbols which are essential for the training of our network) are available.

This set is enhanced by 1,199 in-domain therapy sessions provided by the counseling and psy-

chotherapy transcripts series (CPTS). The combined dataset is randomly split (80-20 split at the
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session level) into training and validation sets. Here, we use the same role-specific LMs as the ones

trained and used in Chapter 2, employing CPTS and the entire Fisher English corpus for training.

Please refer to Table 2.3 for details on the size of the corresponding vocabularies.

3.5 Experiments and Results

3.5.1 Baseline systems

Audio-based diarization with speaker clustering

As an audio-only baseline, we use a diarization system following the widely applied x-vector/PLDA

paradigm (Sell et al., 2018). As shown in Figure 3.4, the speech signal is first segmented uniformly

and an x-vector is extracted for each segment. The pairwise similarities s(·, ·) between all those

embeddings are then calculated based on PLDA scoring (equation (3.1)).

uniform
segmentation

audio clustering

Figure 3.4: Baseline audio-based speaker diarization.

The segments are clustered into same-speaker groups following a HAC approach with average

linking. Since our experiments are conducted on dyadic interactions, we force the HAC algorithm

to run until two clusters are constructed.

Language-based diarization

As a language-only baseline, we use the system of Figure 3.5, which essentially consists of the first

steps of the framework in Figure 3.2. After estimating the segment-level role labels as described in

Sections 3.3.1 and 3.3.2, we can simply use those as our diarization output labels to evaluate the

performance of a system that only depends on linguistic information. In that case, we only utilize

audio to get the timestamps of the text segments. If an ASR system is used, this information is

already available through the decoding lattices.
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alignment
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Figure 3.5: Baseline language-based speaker diarization.

3.5.2 Experimental setup

As a pre-processing step, the text which is available from the manual transcriptions of the PSYCH

corpus is normalized to remove punctuation symbols and capital letters, and force-aligned with the

corresponding audio sessions. Based on the word alignments, we segment the audio according to

whether there is a silence gap between two words larger than a threshold equal to 1 sec. We should

highlight that this initial segmentation is applied before running either one of the baseline systems

or our proposed architecture. Thus, the initial segments to be diarized are always the same and

those are also the segments that we pass to the ASR system. The diarization ground truth is also

constructed through the word alignments, by allowing a maximum of 0.2 sec-long in-turn silence.

The resulting text segments are further subsegmented at the sentence level based on the output

of the tagger in Figure 3.3. During training we define as “sentence” any text segment between

two punctuation symbols denoting pause, apart from commas. We exclude commas first because

they normally do not indicate speaker change points but also because they are too frequent in

our training set and they would lead to very short segments, not containing sufficient information

for the task of role recognition. The tagger is built using the NCRF++ toolkit (Yang & Zhang,

2018). Following the general recommendations by Reimers and Gurevych (2017) and after our own

hyperparameter tuning, the network comprises 4 CNN layers and 2 stacked BiLSTM layers with

dropout (p = 0.5) and l2 regularization (λ = 10−8). The length of each word representation is 330

(character embedding dimension = 30, word embedding dimension = 300). The network is trained

using the Adam optimizer with a fixed learning rate equal to 10−3 and a batch size equal to 256

word sequences. The tagger achieves an F1 score of 0.805 on the validation set after 14 training

epochs.

All the LMs required for role recognition are 3-gram models with Kneser-Ney smoothing built

with the SRILM toolkit, as described in Section 2.5. The audio-based diarization framework is built
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using the Kaldi toolkit (Povey et al., 2011). We use the VoxCeleb pre-trained x-vector extractor4

and the PLDA model which comes with it, after we adapt it on the development set of the PSYCH

corpus, both for the audio-only baseline and for our linguistically-aided system. The x-vectors

are extracted after uniformly segmenting the audio into 1.5 sec-long windows with a window shift

equal to 0.25 sec. Those are normalized and decorrelated through a linear discriminant analysis

(LDA) projection and dimensionality reduction (final embedding length = 200), mean, and length

normalization. The evaluation is always based on the diarization error rate (DER), as estimated

by the NIST md-eval.pl tool, with a 0.25 sec-long collar, ignoring overlapping speech. DER

incorporates three sources of error: false alarms (speech in the output but not in the ground truth),

missed speech (speech in the ground truth but not in the output), and speaker confusion (speech

assigned to the wrong speaker cluster).

To get the ASR outputs, we use Kaldi’s pre-trained ASpIRE acoustic model5, coupled with

the 3-gram LM given in equation (2.8). This ASR system gives a word error rate (WER) equal

to 38.02% for the PSYCH-dev and 39.78% for the PSYCH-test set. It is noted that WERs in

this range are typical in spontaneous medical conversations (Kodish-Wachs, Agassi, Kenny III, &

Overhage, 2018).

3.5.3 Results with reference transcripts

Before applying ASR, we employ our system using the manually derived transcripts. That way,

we can inspect the usability and effectiveness of our approach, eliminating potential propagation

errors because of ASR. Table 3.1 gives the results of our linguistically-aided diarization system

in comparison with the audio-only and language-only baseline approaches. First, we notice that,

between the two baselines, the one using the acoustic modality yields better results. This came at

no surprise since we expected that audio carries the most important speaker-specific characteristics.

Hence, we propose using language only as a supplementary stream of information.

When we apply our linguistically-aided system using our sequence tagger to segment at the

sentence level (still using all the segments, without applying any confidence criterion) we get a

4https://kaldi-asr.org/models/m7
5https://kaldi-asr.org/models/m1
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Table 3.1: DER (%) following our linguistically-aided approach and the two baselines.

transcript
source

text
segmentation

audio
only

language
only

linguistically
aided

linguistically
aided†

reference
oracle

11.05
12.99 7.28 6.99

tagger 20.09 7.71 7.30

ASR tagger 11.05 27.07 8.37 7.84

The text segmentation (when needed) is either performed by our sequence tagger or based on
the manually annotated speaker changes (oracle).
† denotes results when only a% of the segments we are most confident about are taken into
account in each session for the profile estimation, where a is a parameter optimized on the
development set.

30.23% DER relative improvement compared to the audio-only approach. In the first row of

Table 3.1 we additionally report results when using the oracle speaker segmentation provided by

the manual annotations instead of applying the sequence tagger. That way, we can eliminate any

negative effects caused by a suboptimal speaker change detector. As expected, the results are indeed

better, but it is worth noting the difference in the performance gap between the language-only and

the linguistically-aided approaches when we compare the oracle vs. the tagger-based segmentation.

Since the sequence tagger operates at the sentence level, its output is over-segmented with respect

to speaker changes. As a result, utterances are broken into very short segments, with several

segments containing insufficient information to infer speaker role in a robust way. However, when

we aggregate all those speaker turns to only estimate an average speaker profile, such inaccuracies

cancel out.

Further improvements are observed if for profile estimation we only keep the segments we are

most confident about, applying the confidence metric introduced in Section 3.3.3. Instead of directly

optimizing for the parameter θ appearing in equation (3.3), we find the parameter a that minimizes

the overall DER on the development set when only the a% segments we are most confident about

are taken into consideration per session. The results on the test set are reported in the last column

of Table 3.1 (a = 70 for the tagger segmentation and a = 55 for the oracle segmentation, after

optimizing on the development set). An additional 5.32% relative error reduction is achieved when

our tagger is used and similar improvements are noticed in the case of oracle text segmentation.

In Figure 3.6 we plot DER as a function of the percentage of the segments we use to estimate

the speaker profiles within a session. Even though the oracle text segmentation consistently yields
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marginally better results, it seems that if we carefully choose which segments to use to get an

estimate of the speakers’ identities, our tagger-based segmentation approaches the oracle perfor-

mance. In fact, the best result we got on the test set (optimizing for a on the same set) using

our segmenter was 7.13% DER, while the corresponding number using the oracle segmentation was

6.99%. We should highlight here that the analysis presented in this work is based on using a% of

the segments within a session, after choosing some a which remains constant across sessions. It

is probable that this is a session-specific parameter which ideally should be chosen based on an

alternative, session-level strategy.
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Figure 3.6: DER (%) as a function of the number of text segments we take into account per session
for the profile estimation, based on our confidence metric. Text segmentation is either performed
by our sequence tagger or based on the manually annotated speaker changes (oracle). Results are
presented both with reference and with ASR transcripts.

3.5.4 Results with ASR transcripts

For the experiments in this Section we apply the same pre-processing steps, but we replace the

reference transcripts with the textual outputs of the ASR system and the corresponding time

alignments. The results are given in the last row of Table 3.1. Here, we report results only when

using the sequence tagger (and not with oracle segmentation), simply because we now assume we

have no access to the reference transcripts, so we cannot know the oracle speaker change points.

As we can see, the diarization performance is substantially improved compared to the audio-only
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system (relative DER reduction equal to 24.25%) even if the WER of the ASR module is relatively

high, as reported in Section 3.5.2. It seems that when using the transcripts only for the task of

profile estimation, the overall performance is not severely degraded by a somehow inaccurate ASR

system. This is not the case for our language-only baseline. Since in that case the final output only

depends on linguistic information, the performance gap between using manual and ASR-derived

transcripts (language-only column in Table 3.1) is large. We should note that this performance

gap is not only due to higher speaker confusion in the case of ASR transcripts, but also because

of increased missed speech. In particular, the missed speech when using ASR is 2.7% because of

word deletions (as opposed to 0.6% when the reference transcrpits and the tagger are used).

As was the case with the experiments in Section 3.5.3, further improvements are observed when

only using a subset of the total number of segments per session to estimate the speaker profiles. In

particular, if a = 45% of the segments for which we are most confident about (after optimizing for

a on the development set) are used, DER is reduced to 7.84%. The beneficial effects of using our

confidence metric to estimate a speaker representation only by a subset of their assigned speech

segments is also demonstrated in Figure 3.6.

3.6 Conclusion

We proposed a system for speaker diarization suitable to use in conversations where participants

assume specific roles, associated with distinct linguistic patterns. While this task typically relies on

clustering methods which can lead to noisy speaker partitions, we demonstrated how we can exploit

the lexical information captured within the speech signal in order to estimate the speaker profiles

and follow a classification approach instead. A text-based speaker change detector is an essential

component of our system. For this subtask, assuming each sentence is speaker-homogeneous, we

proposed using a sequence tagger which segments at the sentence level, by detecting the beginning of

a new sentence and we showed that this segmentation strategy approaches the oracle performance.

The resulting segments are assigned a speaker role label which is later used to construct the desired

speaker identities and we introduced a confidence metric to be associated with this assignment. Our

results showed that such a metric can be used in order to take into consideration only the segments

we are most confident about, leading to further performance improvements. When applied to
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dyadic interactions between a therapist and a patient, our proposed method achieved an overall

relative DER reduction equal to 29.05%, compared to the baseline audio-only approach with speaker

clustering. When reference transcripts were used instead of ASR outputs, the corresponding overall

reduction was equal to 33.94%.

Since role recognition is a supervised task, one drawback of our system when compared to

traditional diarization approaches is that it requires in-domain text data in order to build the

role-specific LMs. It should be additionally highlighted that the diarization results can be fur-

ther improved if, for example, a re-segmentation module is employed as a final step, or a more

precise audio segmentation strategy is followed instead of relying on uniform segmentation. For

instance, an audio-based speaker change detector could be applied both for the audio-only baseline

and the linguistically-aided system and in the latter case this could be used in combination with

the language-based segmenter. However, our goal in this chapter was mainly to demonstrate the

effectiveness of constructing the speaker profiles within a session to be diarized in order to con-

vert the clustering task into a classification one and not to achieve the best possible diarization

performance. Additionally, since the initial segmentation was the same both for our system and

our audio-only baseline, we expect that any improvements with respect to that part (i.e. more so-

phisticated segmentation and/or application of re-segmentation techniques) would lead to similar

relative improvements to both systems.

Here we essentially modelled each speaker by a single embedding, since for the final profile esti-

mation we averaged over all the speech segments assigned to the corresponding speaker. A potential

extension of the current work would be an exploration of alternative speaker identity construction

strategies, e.g., representing a speaker by a distribution of embeddings. This is particularly promis-

ing in scenarios where recordings are long enough so that they may incorporate various acoustic

conditions or different speaking styles corresponding to the same speaker. In any case, to construct

the speaker profiles based on roles, we had to assume there is one-to-one correspondence between

speakers and roles within a conversation (for our experiments, one speaker assuming the role of

patient and one speaker assuming the role of provider). However, there are domains where such an

assumption does not hold. In the following chapter, we are going to study in depth such scenarios

and we will provide an alternative role-based approach towards more robust speaker diarization.
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Chapter 4

Multimodal Speaker Clustering with

Role Induced Constraints

In the previous chapter, we introduced a methodology that utilizes speaker roles to reduce

diarization from a clustering problem to a classification one, following a multimodal approach

where both audio and text were taken into consideration. As we saw, the language used by the

participants in a conversation carries information that can supplement the audio modality. However,

we assumed that each speaker is linked to a unique speaker role, an assumption that we also

followed in Chapters 1 and 2. In this chapter we propose an alternative approach where we employ

a supervised text-based model to extract speaker roles and then use this information to guide an

audio-based spectral clustering step by imposing must-link and cannot-link constraints between

segments. The proposed method, which does not need the aforementioned assumption, is applied

on two different domains, namely on medical interactions and on podcast episodes, and is shown

to yield improved results when compared to the audio-only approach.

The work presented in this chapter has been submitted for publication. The pre-print is available (Flemotomos
& Narayanan, 2022).
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4.1 Introduction

Speaker diarization, as explained in Sections 3.1 and 3.2, is the task of segmenting a multi-party

speech signal into speaker-homogeneous regions (and tagging them with speaker-specific labels)

and is a critical component of several applications, including speaker-attributed speech recognition,

audio indexing, and speaker tracking (Anguera et al., 2012; Park et al., 2022). Even though recently

introduced end-to-end neural diarization offers simplicity and achieves remarkable results in some

scenarios (Fujita et al., 2019; Horiguchi, Fujita, Watanabe, Xue, & Nagamatsu, 2020), modular,

clustering-based diarization is still widely used and has been an indispensable part of award-winning

systems in recent challenges (Medennikov et al., 2020; Y. Wang et al., 2021).

In the conventional diarization approach, the speech signal is first segmented into chunks which

are assumed to be speaker-homogeneous, in the sense that a single speaker is active therein. Speaker

representations, typically bottleneck feature vectors obtained from a speaker classification neural

network (Dawalatabad et al., 2021; Koluguri, Park, & Ginsburg, 2022; Snyder et al., 2018), are

then estimated for all the segments and their pairwise similarities are computed. A clustering

algorithm that gives the desired labeled speech segments is finally employed. Even though it is

generally assumed that no information is known a priori about the speakers, in practice we often

need to deploy diarization systems in specific applications, and domain-dependent processing can

be used to further improve the final performance. To that end, both the acoustic (e.g., Y. Wang

et al., 2021) and the linguistic (e.g., Chapter 3) streams of information can be exploited to either

adapt the models or modify the diarization pipeline. The language-based approach, where the

transcripts of a recording are taken into consideration during diarization, is especially promising

for interactions where speakers play dissimilar roles. It should be noted that several role-playing

conversations, such as interviews, clinical interactions, and court hearings, have been included in

the evaluation data of recent diarization challenges (Ryant et al., 2021).

In Chapter 3 we used language to identify the roles associated with different speech segments,

estimate the acoustic profiles of the participants in the conversation, and eventually reduce the

clustering problem into a classification one. Along similar lines, in Chapter 1 we ran an audio-based

speaker clustering and a language-based role recognition module in parallel and then combined their

outputs through a meta-classifier. However, those systems assume a one-to-one correspondence
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between speakers and roles, i.e., every speaker is linked to a unique role during a conversation. Even

though this is a reasonable assumption in multiple domains (e.g., medical domain with dialogues

between a clinician and a patient), the systems cannot be easily generalized when a single speaker

assumes multiple roles or when multiple speakers play the same role (e.g., trials with a single judge,

a group of co-defendants, and multiple prosecution witnesses).

To overcome this limitation, here we propose to exploit the linguistically extracted role informa-

tion only to impose constraints during audio-based clustering. Depending on the domain, we can

impose must-link and/or cannot-link constraints, without the need for one-to-one correspondence

between speakers and roles. In particular, we use a BERT-based classifier to extract speaker role

information from text and we then impose a list of pairwise constraints between segments linked

to the same roles or different ones. Using manually-derived speaker-homogeneous segments with

oracle transcriptions, we evaluate the effectiveness of the approach on the clustering performance

by running experiments on two different domains: i) dyadic clinical interactions, where the roles of

interest are the ones of the therapist and the patient, and ii) multi-party interactions from a weekly

radio show with only partial role information available, where the role of interest is the host.

4.2 Background and Prior Work

4.2.1 Spectral clustering for speaker diarization

Clustering is one of the main components in modular speaker diarization. During that step, speech

segments are grouped into same-speaker classes, usually following either a HAC (Sell et al., 2018),

or a spectral clustering (Q. Wang et al., 2018) approach. This grouping is based on the pair-

wise similarities between the N segments to be clustered, which are stored in an affinity matrix

Ŵ ∈ RN×N . In Chapter 3 we used PLDA to estimate the elements of the affinity matrix. Another

common choice for estimating the affinities uses the cosine distance: given two speaker embeddings

vi, vj , we have

Ŵij =
1

2

(
1 +

vi · vj

||vi|| · ||vj ||

)
(4.1)

which ensures that the affinities are in the range [0, 1].

Having constructed the refined affinity matrix W (where refinements are explained later), spec-
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tral clustering is a technique that exploits the eigen-decomposition of W to project the N elements

onto a suitable lower-dimensional space (Ng, Jordan, & Weiss, 2001). To do so, we define the

degrees di ,
∑

j Wij and we construct the normalized Laplacian matrix

L = I−D−1/2WD−1/2 (4.2)

where D = diag{d1, d2, · · · , dN}. Assuming we know the number of speakers k, we find the k

eigenvectors x1,x2, · · · ,xk corresponding to the k smallest eigenvalues of L and form the matrix

X = [x1|x2| · · · |xk]. After normalizing the rows of X to unit norm, so that X̃ij = Xij/
√∑

j X2
ij ,

we cluster the N rows of X̃ through a k-means algorithm and assign the original l-th segment to

speaker s if and only if the l-th row of X̃ is assigned to speaker s.

In order to effectively use spectral clustering in diarization settings, several refinement oper-

ations have been proposed to be applied on the original affinity matrix (Park, Han, Kumar, &

Narayanan, 2019; Q. Wang et al., 2018), the most notable being p-thresholding. Given the original

affinity matrix Ŵ, the (100− p)% largest values in each row are set to 1 and the rest are either bi-

narized to 0 or multiplied by a small constant τ (soft thresholding), giving the modified matrix Ŵp.

Since this operation may break the symmetry property of the affinity matrix, we re-symmetrize it

to get

W =
1

2

(
Ŵp + ŴT

p

)
(4.3)

Instead of fixing a specific value p, an auto-tuning approach which uses the maximum eigengap

of the Laplacian matrix can be followed (Park, Han, Kumar, & Narayanan, 2019). The eigengap

criterion has its roots in graph theory and is also used to estimate the number of clusters (speakers)

k̂, when this is not known a priori. L is a positive semi-definite matrix with N non-negative real

eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . If W is viewed as an adjacency matrix of a graph with k̂

perfectly connected components, then k̂ equals the multiplicity of the eigenvalue λ1 = 0. In practical

applications, where we do not expect perfect components, k̂ is estimated by the maximum eigengap:

k̂ = argmax
k

λk+1

λk
(4.4)
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4.2.2 Constrained clustering for speaker diarization

Constrained clustering extends the traditional unsupervised learning paradigm of clustering by inte-

grating supplemental information in the form of constraints (Gançarski, Dao, Crémilleux, Forestier,

& Lampert, 2020). Even though several types of constraints have been explored, the most common

ones are the instance-level relations, and in particular the must-link (ML) and cannot-link (CL)

constraints. Under that viewpoint, if an ML (CL) constraint is imposed between two segments,

then those segments must (must not) be in the same cluster.

In speaker diarization, constrained clustering has been applied with constraints imposed either

by human input, or by acquired knowledge within a particular framework. C. Yu and Hansen (2017)

propose a system where a sufficient number of segments corresponding to all the speakers are first

identified by a human expert and the rest of the segments are clustered in a constrained fashion.

Bost, Xavier and Linares, Georges (2014) apply a two-step clustering for audio-based speaker di-

arization in videos, where speakers are first clustered locally in scenes detected to contain dialogues,

before a global clustering with CL constraints between segments locally assigned to different clus-

ters. Similarly, in an effort to integrate end-to-end and clustering-based diarization, Kinoshita,

Delcroix, and Tawara (2021a, 2021b) first estimate distinct local neural speaker embeddings from

short speech chunks, which they then CL-constrain in the subsequent global speaker clustering

step. Finally, Tripathi et al. (2022) employ a speaker change detector and impose CL constraints

between consecutive segments separated by a speaker change and ML constraints between segments

where a speaker change was not detected. To the best of our knowledge, constraints grounded on

language, that can provide crucial information in role-based conversational settings, have not been

explored.

4.2.3 Constrained spectral clustering

Constraints can be combined with several clustering algorithms, such as k-means (Kinoshita et al.,

2021b) or HAC (Prokopalo, Shamsi, Barrault, Meignier, & Larcher, 2021). In this work we use a

constrained spectral clustering approach, where constraints are integrated via the exhaustive and

efficient constraint propagation (E2CP) algorithm (Lu & Peng, 2013), which was recently applied

in diarization settings (Tripathi et al., 2022). Applying E2CP, we can propagate an initial set
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of pairwise constraints to the entire session. In order to do so, we define a constraint matrix

Z ∈ RN×N , such that

Zij =


+1, if ∃ ML constraint between i and j

−1, if ∃ CL constraint between i and j

0, if @ any constraint between i and j

(4.5)

Soft constrains can also be applied within this framework by setting |Zij | < 1, with |Zij | denoting

the confidence score that a constraint should be imposed between the i-th and j-th segments.

The elements of the affinity matrix Ŵ are then updated as

Ŵij ←

 1− (1− F∗ij)(1− Ŵij), if F∗ij ≥ 0

(1 + F∗ij)Ŵij , if F∗ij < 0
(4.6)

where F∗ contains the constraints propagated to the entire session based on the initial set of

constraints and is estimated as

F∗ = (1− α)2(I− αL̄)−1Z(I− αL̄)−1 (4.7)

L̄ equals D̄−1/2ŴD̄−1/2, where D̄ is a diagonal matrix defined like D in Section 4.2.1, but using

the degrees of Ŵ. The constant α ∈ [0, 1] is a tunable hyperparameter: a small value penalizes

large changes between the initial pairwise constraints in Z and the new constraints created during

propagation, while a large value penalizes large changes between the neighboring segments in the

graph described by Ŵ. Note that for α = 0 we get F∗ = Z which means we only rely on the

initial constraints, and for α = 1 we get F∗ = 0, which means we completely ignore any constraint

information. The constraint propagation and integration described here takes place before the

refinement and spectral operations described in Section 4.2.1.

4.3 Proposed Method

We propose to use a two-step clustering for conversations where speakers assume distinct roles, as

depicted in the example of Figure 4.1.
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hello
Chris

hello
doctor

I had a terrible
headache yesterday

audio-based
constrained clustering

…
hello
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hello
doctor

I had a terrible
headache yesterday
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…
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Chris
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doctor

I had a terrible
headache yesterday

Patient Patient

text-based
role recognition

Figure 4.1: Two-step speaker clustering for role-playing interactions. Here, an ML constraint is
imposed for two segments both associated with the role patient. Those segments have to be in the
same cluster after the clustering step.

First, speaker roles are identified from text for each speech segment. To that end, we employ

a BERT-based classifier (Devlin, Chang, Lee, & Toutanova, 2019), where we add dropout and a

softmax inference layer on top of a pre-trained BERT model and we fine-tune it for the task with in-

domain data. If, after classification, we have complete role information available (i.e., each segment

is associated with a distinct speaker role), we can directly get a purely text-based diarization result

(see also Chapter 3). However, there are multiple scenarios where only partial role information is

available (e.g., we have sufficient data to only train a binary classifier to identify news anchor vs.

guest in a broadcast news program with multiple potential guests within a show). Additionally, we

expect that there will be several segments where the linguistic content is not sufficient to robustly

infer the associated speaker role.

So, we only use role information to impose suitable constraints for the following step of audio-

based clustering and we take into account only segments where roles are identified with sufficient

confidence. Even though it is well known that neural classifiers tend to be over-confident about

their decisions and that softmax values are usually not a robust proxy of confidence scores, in

practice we saw that we can use a softmax threshold as a threshold of confidence, as discussed
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in Section 4.5. For those segments where the confidence of their associated role is beyond some

specified threshold, we impose ML and CL constraints, according to the domain we are working

on. For instance, we can distinguish between the following general scenarios:

1. different roles are always played by different speakers within a session (e.g., teacher vs. stu-

dents during a lecture): apply a CL constraint between any segments associated with different

speaker roles,

2. different speakers always play different roles within a session (e.g., anchor vs. interviewer vs.

guest during a broadcast news program, where anchor and interviewer might be the same

person): apply an ML constraint between any segments associated with the same speaker

role,

3. one-to-one correspondence between speakers and roles within a session (e.g., doctor vs. patient

during a doctor’s visit): apply both CL and ML constraints as in cases (1) and (2).

Different types of domain-specific strategies can also be followed. The constraints are then

integrated within a spectral clustering algorithm, and we proceed as described in Sections 4.2.1

and 4.2.3.

4.4 Datasets

We evaluate the proposed speaker clustering approach on two different domains with role-playing

interactions. As detailed below, we use a medical dataset drawn from the psychotherapy field and

another dataset from the entertainment industry with podcast episodes.

4.4.1 Psychotherapy sessions

We use a collection of psychotherapy sessions recorded at a university counseling center (UCC)1,

and specifically the sessions in the sets denoted as UCCtrain, UCCdev and UCCtest1 in (Flemotomos

et al., 2021)2. All the recordings have been normalized to 16 kHz sampling rate, 16 bit precision, and

1Note that this is a different dataset than the MI sessions used for the experiments in the previous chapters.
2See also Chapter 5, Section 5.4.2.
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the two recording microphones suspended from the ceiling of the clinic offices have been combined

through acoustic beamforming. Each session is a dyadic conversation between a therapist and a

patient, thus falls under case (3) according to the categorization given in Section 4.3. The dataset

comprises 97 participants (23 therapists and 74 patients), with no speaker overlap between the

train/dev/eval sets. The sessions have been professionally transcribed, the transcribed segments

have been forced-aligned with the beamformed audio, and any utterances consisting of only non-

speech vocal sounds (e.g., laughs) have been discarded. More details on the dataset are provided

in Table 4.1.

Table 4.1: Size of the UCC dataset.

train dev eval

#sessions 50 26 20

#segments - therapist 8,766 3,959 4,146
#segments - patient 9,052 4,246 4,245

segment duration (mean) 7.8 sec 8.7 sec 6.4 sec
#words per segment (mean) 21.4 22.3 18.8

4.4.2 Podcast episodes

This American Life3 (TAL) is a weekly podcast and public radio show where each episode revolves

around a specific theme and is structured as a story-telling act with multiple characters. Mao, Li,

McAuley, and Cottrell (2020) have curated a dataset of 663 TAL episodes aired between 1995 and

2020. We use the clean, audio-aligned utterances provided, with the recommended train/dev/eval

split, and with the archived audio standardized to 16 kHz, 16 bit precision, mono-channel, wav

format (as described by Mao et al., 2020). In each episode there are on average 17.7 speakers

(std=8.7) with variable speaking times, while the existing background music poses extra challenges

for robust clustering and diarization. The dataset, described in Table 4.2, has been annotated with

speaker identities and with three speaker roles, those of host, interviewer, and subject. However,

the provided role information was not helpful for our purposes, since, according to the annotations,

multiple speakers may play the same role within an episode and, at the same time, a single speaker

3https://www.thisamericanlife.org/
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may play multiple roles (with some episodes having the same speaker occasionally playing all 3

roles). So, we instead chose to annotate as host utterances only the ones spoken by Ira Glass and

assign all the other utterances to a non-host speaker role. Ira Glass is the host and executive

producer of the show and speaks for 18.6% of the time during the entire dataset4. Since in this

case different roles always denote different speakers (but the inverse does not hold since there are

multiple non-host speakers), this dataset falls under case (1) according to the categorization given

in Section 4.3. Of course, we should note that since this annotation strategy is speaker-dependent,

the role recognition algorithm applied is also expected to capture speaker-specific, and not purely

role-specific, information.

Table 4.2: Size of the TAL dataset.

train dev eval

#episodes 593 34 36

#segments - host 26,523 1,765 1,317
#segments - non-host 119,295 6,869 8,039

segment duration (mean) 14.1 sec 13.7 sec 13.4 sec
#words per segment (mean) 37.7 36.6 36.6

4.5 Experiments and Results

4.5.1 Experimental setup

For both datasets we run experiments using the manually derived speaker segments and the cor-

responding transcriptions, in order to evaluate the effectiveness of the proposed method without

propagating potential errors from automated segmentation and speech recognition modules.

We standardize the text by stripping punctuation, removing non-verbal vocalizations and con-

verting all letters to lower case. We build the binary role classifiers (therapist vs. patient and

host vs. non-host) using TensorFlow (Abadi et al., 2016) with the pre-trained uncased English

BERT-base model provided in TensorFlow model garden (H. Yu et al., 2020), adding a dropout

4For reference, the second single most-talking speaker of the dataset is Nancy Updike, speaking for 1.6% of the
time.
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layer with dropout ratio equal to 0.2. Since very short segments are not expected to have sufficient

role-related information, during fine-tuning we only take into account segments containing at least

5 words (65.58% of the available training segments for UCC and 88.65% of the available training

segments for TAL). We fine-tune the models for 2 epochs on the training subsets of the datasets,

using the development subsets for validation. We use the Adam optimizer with decoupled weight

decay (Loshchilov & Hutter, 2019) with initial learning rate equal to 2 · 10−5 and with a warm-up

stage lasting for the first 10% of the training time. The mini-batch size is set to 16 segments and

the maximum allowed segment length is set to 128 tokens5, which means that 2.91% of the initial

training UCC segments and 2.06% of the initial training TAL segments are cropped.

The speaker representation of the segments is based on the widely used x-vectors (Snyder et

al., 2018) and, to that end, the pre-trained VoxCeleb x-vector extractor from Kaldi (Povey et al.,

2011) is used6. A single x-vector is extracted per segment, taking into consideration only the

voiced frames, as identified by an energy-based voice activity detector. X-vectors are projected

through linear discriminant analysis (LDA) on a 200-dimensional space and are further mean- and

length-normalized. The segments are then clustered following the described constrained spectral

clustering approach with ML and/or CL constraints imposed according to the predicted associated

roles7. For the UCC dataset, which features dyadic interactions, we group all the segments into two

clusters, while for TAL we estimate the number of speakers using the eigengap criterion described

in Section 4.2.1, searching in the range 2–50. The value of p for the p-thresholding step is found

through auto-tuning (Park, Han, Kumar, & Narayanan, 2019), searching in the range 40–95, and

we use soft thresholding with τ = 0.01 (Q. Wang et al., 2018).

All the results are reported on the eval subsets of the data. Diarization is evaluated with respect

to the diarization error rate (DER), estimated with the pyannote.metrics library (Bredin, 2017a)

without allowing any tolerance collar around segment boundaries. As explained in Chapter 3

(Section 3.5.2), DER incorporates three sources of error; false alarms, missed speech, and speaker

confusion. However, segmentation is always the oracle one provided by human annotators and,

5according to the default WordPiece-based BERT tokenizer
6https://kaldi-asr.org/models/m7
7https://github.com/wq2012/SpectralCluster
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since there is almost no speaker overlap in our datasets, by DER we essentially estimate speaker

confusion (false alarm is always 0 and missed speech is 0.02% for UCC and 0.13% for TAL).

4.5.2 Results and discussion

If we have perfect role information for all the segments and if there is one-to-one correspondence

between roles and speakers (e.g., one therapist vs. one patient in UCC), we can get a perfect

diarization result in terms of speaker confusion. In the framework of constrained spectral clustering,

this can be done by filling Z in equation (4.5) with all the corresponding constrains and setting

α = 0 in equation (4.7) so that F∗ = Z. This is reflected in Figure 4.2 where we see how DER

changes as we provide more oracle constraints to the algorithm. This is similar to the expected

behavior of the algorithm when constraints are added in the form of human supervision.

0 0.2 0.4 0.6 0.8 1
#(constrained segments) / #segments

0

0.5

1

1.5

D
ER

 (%
)

Figure 4.2: DER for the UCC dataset as a function of the (normalized) number of constraints,
always providing oracle role information to build the constraints, for different values of α in equa-
tion (4.7).

Without having access to the oracle role information, we have to rely on a segment-level role

classifier. The classification accuracy of our BERT-based classifiers after fine-tuning is given in

Table 4.3 and is compared to a naive majority-class baseline. Even though the classifiers provide

reasonable results, we need to ensure that constraints are imposed only on segments which are

confidently linked to some role. For this work, apart from only using segments longer than a

specified duration (here, containing at least 5 words) to ensure some minimal linguistic content, we

use the softmax values associated with the predicted roles as a proxy of the confidence level.

As shown in Figure 4.3, the softmax value can indeed act as a reasonable proxy of confidence for
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Table 4.3: Classification accuracy (%) of the BERT-based
model and a majority-class baseline.

all segments segments w. ≥ 5 words

maj. class BERT maj. class BERT

UCC 50.59 73.63 53.50 83.22
TAL 85.92 90.87 85.41 90.92

for UCC data: binary problem of identifying therapist vs. patient
for TAL data: binary problem of identifying host vs. non-host

our purposes. In particular, if we only consider segments where the corresponding softmax value is

above some threshold, accuracy increases monotonically as a function of the threshold. However,

the choice of the threshold value is a trade-off decision between accuracy and adequate support so

that we have a sufficient number of constraints. With that in mind, we choose a threshold equal

to 0.980 for the UCC data (accuracy = 94.66%, support = 3,222) and equal to 0.995 for the TAL

data (accuracy = 98.15%, support = 3,674), which leads to imposing constraints on around 40%

of the segments in both cases.
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Figure 4.3: Classification accuracy and support for the BERT-based classifiers when only segments
with associated softmax value above some threshold are considered.

After constructing the constraint matrix based on the described role classification only for the

segments with sufficient role classification confidence, we perform the constrained spectral clustering

algorithm. Our experiments fall under case (3) for the UCC data and under case (1) for the TAL
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data, according to the categorization given in Section 4.3. The results8 are reported in the second

column of Table 4.4. For comparison, we also provide results for the two extreme cases: i) following

a conventional, unconstrained spectral clustering, which ignores any language-based information

and ii) following a language-only classification using the results of the BERT-based classifier for all

the segments, without setting any softmax threshold, which ignores any audio-based information.

Table 4.4: DER (%) using unconstrained audio-only clustering, constrained clustering with role-
induced constraints, and language-only role-based classification.

unconstrained clustering
(audio-only)

constrained clustering
(multimodal)

role-based classification
(language-only)

UCC 1.38 1.31 10.34
TAL 42.22 23.86 63.01∗

∗results contain only 2 speakers, since we rely on binary classification

In the case of the UCC data, our approach yields a small improvement (5.1% relative) compared

to the unconstrained baseline. We additionally found that adding more constraints (selecting a

smaller softmax threshold as our confidence criterion) leads to worse performance. Comparing this

finding to the results displayed in Figure 4.2 with oracle constraints, where error approaches 0 given

a large number of constraints, we realize that our method is sensitive to the performance of the role

classifier. This is because any classification errors can be easily propagated to the clustering step

(Figure 4.1). This error propagation becomes, as expected, more evident in the case we constrain

all the segments, relying only on the linguistic stream of information (last column of Table 4.4).

Looking at the results with the TAL data, we observe a substantial improvement when going

from unconstrained to constrained clustering. We can see that in scenarios with a large number

of speakers, even partial role-based information (like the host vs. non-host classification here) can

provide useful cues that robustly guide the subsequent clustering. In more detail, we observed that

the imposed constraints changed the final Laplacian matrix in a way that the eigengap criterion led

to the detection of more clusters (speakers) per episode. The severe performance degradation with

the language-only approach is expected, since the results in that case only contain two speakers

(since we only have two role classes), even though each TAL episode features multiple participants.

8Those results are for α = 0.75 for UCC and α = 0.50 for TAL.
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4.6 Conclusion

In this chapter we proposed to integrate text-based constraints within audio-based clustering to

improve the performance of speaker diarization in conversational interactions where speakers assume

specific roles. We implemented a BERT-based role classifier solely relying on text data and used its

output to construct a constraint matrix for use within constrained spectral clustering. Experimental

results in two different domains showed that, after applying a softmax-based confidence criterion,

performance can be improved both in cases of one-to-one correspondence between speakers and roles

and in cases with only partial available role information, thus overcoming limitations of assumptions

we needed to follow for the approaches proposed in the previous chapters.

We performed all our experiments using oracle textual information and oracle speaker segmen-

tation. We should note that, in a real-world scenario, errors would be introduced and potentially

propagated to the clustering step both because of a speech recognizer and because of non-ideal seg-

mentation. Speaker segmentation could be included as a separate pre-processing module (e.g., like

in Chapter 3), or incorporated with the role recognizer in a named entity recognition (NER)-like

approach (e.g., Zuluaga-Gomez et al., 2021). Future work can also investigate a combination of hard

and soft constraints for the task, as well as different types of role-induced constraints. Even though

here we focused on linguistic characteristics, role-specific behaviors can also be manifest through

acoustic, structural, or visual cues, all of which can be potentially used within the framework of

role-dependent constrained speaker clustering.

With this chapter, we close our discussion on how linguistically-extracted speaker role infor-

mation can be used to facilitate the task of speaker diarization. Here we studied how to use

this information to impose constraints during audio-based clustering. In Chapter 3 we proposed a

technique, suitable in scenarios with one-to-one correspondence between speakers and roles (e.g., pa-

tient-doctor interactions), to construct the acoustic speaker identities and reduce diarization to a

classification problem. In the following chapter we are going to see how the latter technique can be

incorporated within a larger speech and language processing pipeline deployed in clinical settings

to solve a real-world problem; the one of psychotherapy quality assessment.
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Part III

Real World Impact
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Chapter 5

Why Do We Need Roles? Automated

Psychotherapy Evaluation as an

Example Downstream Application

With the growing prevalence of psychological interventions, it is vital to have measures that

rate the effectiveness of psychological care to assist in training, supervision, and quality assurance

of services. Traditionally, quality assessment is addressed by human raters who evaluate recorded

sessions along specific dimensions, often codified through constructs relevant to the approach and

domain. This is, however, a cost-prohibitive and time-consuming method that leads to limited

use in real-world settings. To facilitate this process, we have developed an automated competency

rating tool able to process the raw recorded audio of a session, analyzing who spoke when, what

they said, and how the health professional used language to provide therapy. Since the system

focuses on therapist-attributed language, it is essential to robustly differentiate between utterances

spoken by the therapist vs. the patient. We present and analyze our platform using a dataset drawn

from its deployment in a real-world clinical setting and we show how applying the techniques we

introduced in Chapter 3 can have a substantial beneficial effect to the overall performance.

The work presented in this chapter is based on work that has been published in (Flemotomos et al., 2021).
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5.1 Need for Psychotherapy Quality Assessment Tools

Recent epidemiological research suggests that developing a mental disorder is the norm, rather

than the exception, estimating that the lifetime prevalence of diagnosable mental disorders (i.e., the

proportion of the population that, at some point in their life, have experienced or will experience a

mental disorder) is around 50% (Kessler et al., 2005) or even more (Schaefer et al., 2017). According

to data from 2018, an estimated 47.6 million adults in the United States had some mental illness,

and 1 in 7 adults received professional mental health services (Substance Abuse and Mental Health

Services Administration, 2019).

Psychotherapy is a commonly used process in which mental health disorders are treated through

communication between an individual and a trained mental health professional. Even though its

positive effects have been well documented (Lambert & Bergin, 2002; Perry, Banon, & Ianni,

1999; Weisz, Weiss, Han, Granger, & Morton, 1995), there is room for improvement in terms of

the quality of services provided. In particular, a substantial number of patients report negative

outcomes, with signs of mental health deterioration after the end of therapy (Curran et al., 2019;

Klatte, Strauss, Flückiger, & Rosendahl, 2018). Apart from patient characteristics (Lambert &

Bergin, 2002), therapist factors play a significant and clinically important role in contributing to

negative outcomes (Saxon, Barkham, Foster, & Parry, 2017). This has direct implications for

more rigorous training and supervision (Lambert & Ogles, 1997), quality improvement, and skill

development. A critical factor that can lead to increased performance and thus ensure high quality

of services is the provision of accurate feedback to the practitioner (Hattie & Timperley, 2007).

This can take various forms; both client progress monitoring (Lambert, Whipple, & Kleinstäuber,

2018) and performance-based feedback (Schwalbe, Oh, & Zweben, 2014) have been reported to

reduce therapeutic skill erosion and to contribute to improved clinical outcomes. The timing of the

feedback is of utmost importance as well, since it has been shown that immediate feedback is more

effective than delayed (Kulik & Kulik, 1988).

In psychotherapy practice, however, providing regular and immediate performance evaluation is

almost impossible. Behavioral coding—the process of listening to audio recordings and/or reading

session transcripts in order to observe therapists’ behaviors and skills (Bakeman & Quera, 2012)—

is both time-consuming and cost-prohibitive when applied in real-world settings. It has been
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reported (Moyers, Martin, Manuel, Hendrickson, & Miller, 2005) that, after intensive training and

supervision that lasts on average 3 months, a proficient coder would need up to two hours to

code just a 20 min-long session of motivational interviewing (MI), a specific type of psychotherapy

which is the focus of the current chapter. The labor-intensive nature of coding means that the vast

majority of psychotherapy sessions are not evaluated. As a result, many providers get inadequate

feedback on their therapy skills after their initial training (Miller, Sorensen, Selzer, & Brigham,

2006) and behavioral coding is mainly applied for research purposes with limited outreach to

community settings (Proctor et al., 2011). At the same time, the barriers imposed by manual

coding usually lead to research studies with relatively small sample sizes (Magill et al., 2014),

limiting progress in the field. It is, thus, made apparent that being able to evaluate a therapy

session and provide feedback to the practitioner at a low cost and in a timely manner would both

boost psychotherapy research and scale up quality assessment to real-world use.

In this chapter we investigate whether it is feasible to analyze a therapy session recording in a

fully automatic way and provide feedback to the therapist within short time. The focus is on the

importance of speaker role modeling within the overall computational approach and on how some

of the techniques presented earlier (especially in Chapter 3) can improve the final performance of

automated behavioral coding.

5.2 Behavioral Coding for Motivational Interviewing

Motivational interviewing (MI; Miller & Rollnick, 2012), often used for treating addiction and

other conditions, is a client-centered intervention that aims to help clients make behavioral changes

through resolution of ambivalence. It is a psychotherapy treatment with evidence supporting that

specific skills are correlated with the clinical outcome (Gaume, Gmel, Faouzi, & Daeppen, 2009;

Magill et al., 2014) and also that those skills cannot be maintained without ongoing feedback

(Schwalbe et al., 2014). Thus, great effort from MI researchers has been devoted to developing

instruments to evaluate fidelity to MI techniques.

The gold standard for monitoring clinician fidelity to treatment is behavioral observation and

coding (Bakeman & Quera, 2012). During that process, trained coders assign specific labels or

numeric values to the psychotherapy session, which are expected to provide important therapy-
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related details (e.g., “how many open questions were posed by the therapist?” or “did the counselor

accept and respect the client’s ideas?”) and essentially reflect particular therapeutic skills. While

there is a variety of coding schemes (Madson & Campbell, 2006), in this study we focus on a widely

used research tool, the motivational interviewing skill code (MISC 2.5; Houck, Moyers, Miller,

Glynn, & Hallgren, 2010), which was specifically developed for use with recorded MI sessions

(Madson & Campbell, 2006). MISC defines behavior codes both for the counselor and the patient,

but for the automated system reported here we focus on counselor behaviors.

The MISC manual (Houck et al., 2010) defines both session-level and utterance-level codes.

Session-level codes characterize the entire interaction and are scored on a 5-point Likert scale.

When coding at the utterance-level, instead of assigning numerical values, the coder decides in

which behavior category each utterance belongs. An utterance is a “thought unit” (Houck et al.,

2010), which means that multiple consecutive phrases might be parsed into a single utterance and,

likewise, multiple utterances might compose a single sentence or talk turn. After the session is

parsed into utterances, each one is assigned one of the codes summarized in Table 5.1 (or gets the

label NC if it can not be coded). For the work presented in this chapter we focus on utterance-

level codes, but we also use session-level summary indicators. In particular, we estimate i) the

ratio of reflections (simple and complex) to questions (open and closed), ii) the percentage of open

questions (over the total number of questions), iii) the percentage of complex reflections (over the

total number of reflections), and iv) MI adherence, defined as the percentage of utterances coded

with any code other than advice (with or without permission), raise concern (with or without

permission), confront, direct, warn.

5.3 Psychotherapy Evaluation in the Digital Era

Psychotherapy sessions are interventions primarily based on spoken language, which means that the

information capturing the session quality is encoded in the speech signal and the language patterns

of the interaction. Thus, with the rapid technological advancements in the fields of speech and

natural language processing (NLP) over the last few years (e.g., Devlin et al., 2019; Xiong et al.,

2017), and despite many open challenges specific to the healthcare domain (Quiroz et al., 2019), it

is not surprising to see trends in applying computational techniques to automatically analyze and
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evaluate psychotherapy sessions.

Such efforts span a wide range of psychotherapeutic approaches including couples therapy (Black

et al., 2013), MI (Xiao, Can, et al., 2016) and cognitive behavioral therapy (Flemotomos, Martinez,

et al., 2018), used to treat a variety of conditions such as addiction (Xiao, Can, et al., 2016) and

post-traumatic stress disorder (Shiner et al., 2012). Both text-based (Imel, Steyvers, & Atkins,

2015; Xiao, Can, Georgiou, Atkins, & Narayanan, 2012) and audio-based (Black et al., 2013; Xiao

et al., 2014) behavioral descriptors have been explored in the literature and have been used either

unimodally or in combination with each other (Singla et al., 2018).

In this study we focus on behavior code prediction from textual data. Most research studies

focused on text-based behavioral coding have relied on written text excerpts (Barahona et al.,

2018) or used manually-derived transcriptions of the therapy session (Can, Atkins, & Narayanan,

2015; Gibson et al., 2022; Lee, Hull, Levine, Ray, & McKeown, 2019). However, a fully automated

evaluation system for deployment in real-world settings requires a speech processing pipeline that

can analyze the audio recording and provide a reliable speaker-segmented transcript of what was

spoken by whom. This is a necessary condition before such an approach is introduced into clinical

settings since, otherwise, it may eliminate the burden of manual behavioral coding, but it introduces

the burden of manual transcription.

An end-to-end system is presented by Xiao, Imel, Georgiou, Atkins, and Narayanan (2015) and

Xiao, Huang, et al. (2016), where the authors report a case study of automatically predicting the

empathy expressed by the provider. A similar platform, focused on couples therapy, is presented

by Georgiou, Black, Lammert, Baucom, and Narayanan (2011b). Even employing an ASR module

with relatively high error rate, those systems were reported to provide competitive prediction

performance. The scope of the particular studies, though, was limited only to session-level codes,

while the evaluation sessions were selected from the two extremes of the coding scale. Thus, for

each code the problem was formulated as a binary classification task trying to identify therapy

sessions where a particular code (or its absence) is represented more prominently (e.g., identify

‘low’ vs. ‘high’ empathy).
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5.4 Current Study

5.4.1 System overview

We analyze a platform able to process the raw recording of a psychotherapy session and provide,

within short time, performance-based feedback according to therapeutic skills and behaviors. We

focus on dyadic psychotherapy interactions (i.e., one therapist and one client) and the quality

assessment is based on the counselor-related codes of the MISC protocol (Houck et al., 2010). The

behavioral codes are predicted by NLP algorithms that analyze the linguistic information captured

in the automatically derived transcriptions. The behavioral analysis of the counselor is summarized

into a comprehensive feedback report that can be used directly by the provider as a self-assessment

method or by a supervisor as a supportive tool that helps them deliver more effective and engaging

training.

After both parties have formally consented, the therapist begins recording the session. The

digital recording is sent to the processing pipeline and appropriate acoustic features are extracted

from the raw speech signal. The baseline system explored here (Figure 5.1) consists of six main

steps: (a) voice activity detection (VAD), where speech segments are detected over silence or back-

ground noise, (b) speaker diarization, where the speech segments are clustered into same-speaker

groups (e.g., speaker A, speaker B of a dyad), (c) automatic speech recognition (ASR), where the

audio speech signal of each speaker-homogeneous segment is transcribed to words, (d) speaker role

recognition (SRR), where each speaker group is assigned their role (i.e., therapist vs. client), (e) ut-

terance segmentation, where the speaker turns are parsed into utterances which are the basic units

of behavioral coding, and (f) automated behavioral coding where a MISC-based code is assigned

to each therapist-attributed utterance. Speaker role recognition is essential in this system, since

the goal is to robustly identify and then automatically code the therapist utterances.

The architecture design described can inevitably lead to error propagation. Here, we study how

errors due to diarization can affect the overall performance of the downstream task of psychotherapy

quality assessment and how an alternative framework can help alleviate such error propagation

problems. In particular, we compare the system of Figure 5.1 with the architecture of Figure 5.2,

which is based on the linguistically aided diarization approach introduced in Chapter 3. Using a

collection of real-world psychotherapy recordings acquired after the deployment of our system in
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Figure 5.1: Baseline transcription and coding pipeline developed to assess the quality of a psy-
chotherapy session. The focus of the particular study is on the effect of the speaker diarization and
role recognition modules on the overall performance.

clinical settings, we show that traditional clustering-based diarization can fail for certain sessions,

leading to inaccurate behavior coding results. Employing simple quality and confidence thresholds

based on the expected speaking times of the two interlocutors, we can instead use the linguistically-

aided approach for those sessions and get significant performance gains.
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(first pass)
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Figure 5.2: Transcription and coding pipeline employing linguistically-aided, role-based speaker
diarization.

5.4.2 Deployment: data collection and pre-processing

Through a collaboration with the counseling center of a large US-based university, we gathered

a corpus of real-world psychotherapy sessions to evaluate the system. Therapy treatment was

provided by a combination of licensed staff as well as trainees pursuing clinical degrees. Topics

discussed span a wide range of concerns common among students, including depression, anxiety,

substance use, and relationship concerns. All the participants (both patients and therapists) had

formally consented to their sessions being recorded. Study procedures were approved by the insti-

tutional review board of the University of Utah. Each session was recorded by two microphones

suspended from the ceiling of the clinic offices, one omni-directional and one directed to where the

therapist generally sits.
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Data were collected between September, 2017 and March, 2020, for a total of 5,097 recordings.

Out of those, 188 sessions were selected to be manually transcribed and coded. Coding took place

in two independent trials (one in mid 2018 and one in late 2019), with some differences in the

procedure between the two. For the first coding trial (96 sessions), the transcriptions were stripped

of punctuation and coders were asked to parse the session into utterances. During the second trial

(92 sessions), the human transcriber was asked to insert punctuation, which was used to assist

parsing. Additionally, for the second batch of transcriptions, stacked behavioral codes (more than

one code per utterance) were allowed in case one of the codes is open or closed question (QUO or

QUC). We have split the first trial into train (UCCtrain; 50 sessions), development (UCCdev; 26

sessions), and test (UCCtest1 ; 20 sessions) sets, while we refer to the second trial as the UCCtest2

set. The split for the first trial was done in a way so that there is no speaker overlap between the

different sets. For this chapter, we report results on the 112 sessions of the combined UCCtest1 and

UCCtest2 sets.

The manually transcribed UCC sessions do not contain any timing information, which means

that we needed to align the provided audio with text. That way, we were able to get estimates

of the “ground truth” information required for evaluation. We did so by using the Gentle forced

aligner1, an open-source, Kaldi-based (Povey et al., 2011) tool, in order to align at the word level.

However, we should note that this inevitably introduces some error to the evaluation process, since

9.4% of the words per session on average (std=3.4%) remain unaligned.

Another pre-processing step we needed to take in order to have a meaningful evaluation of

the system on the UCC data is related to the behavioral labels assigned by the humans and by

the platform. In particular, some of the utterance-level MISC codes are assigned very few times

within a session by the human raters and the corresponding inter-rater reliability (IRR) is very low

(Table A.1); additionally, there are pairs or groups of codes with very close semantic interpretation

as reflected by the examples in Table 5.1 (e.g., complex reflections (REC) and reframes (RF)).

Thus, we clustered the codes into composite groups resulting in 9 target labels. The mapping

between the codes defined in the MISC manual and the target labels, as well as the occurrences of

1https://github.com/lowerquality/gentle
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those labels in the UCC data, is given in Table 5.2. The facilitate code (FA) seems to dominate

the data, because most of the verbal fillers (e.g., uh-huh, mm-hmm, etc.)—which are very frequent

constructs in conversational speech—and single-word utterances (e.g., yeah, right, etc.) are labeled

as FA.

Table 5.2: Mapping between MISC-defined behavior codes
and grouped target labels, together with the occurrences of
each group in the evaluation UCC sets.

group MISC codes count

FA FA 13,618
GI GI, FI 7,661
QUC QUC 4,387
QUO QUO 2,658
REC REC, RF 6,342
RES RES 829
MIN ADP, ADW, CO, DI, RCW, RCP, WA 987
MIA AF, EC, SU 1,839
ST ST 2,081

MISC abbreviations are defined in Table 5.1.
MIA stands for MI-Adherent codes.
MIN stands for MI-NonAdherent codes.

5.5 Experiments

We apply and compare the two systems introduced in Section 5.4.1 and we focus on the performance

of the speaker diarization and role recognition modules with respect to the end task of automated

behavioral coding. In both cases, all the other modules (VAD, ASR, utterance segmentation, MISC

labeling) remain fixed—details on those modules are provided in Appendix B.

5.5.1 System with clustering-based diarization

Following a traditional speaker diarization approach, the speech signal is first partitioned into

segments where a single speaker is present and then, those speaker-homogeneous segments are clus-

tered into same-speaker groups. In the baseline pipeline of Figure 5.1 we follow the x-vector/PLDA

paradigm (Sell et al., 2018), the same baseline audio-only diarization approach we followed in Chap-

ter 3. Each voiced segment, as predicted by VAD, is partitioned uniformly into subsegments of
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length equal to 1.5 sec with a shift of 0.25 sec. For each subsegment an x-vector (Snyder et al.,

2018) is extracted using the pre-trained CallHome x-vector extractor2 provided by Kaldi (Povey et

al., 2011). The subsegments are finally clustered according to hierarchical agglomerative clustering

(HAC) with average linking, using probabilistic linear discriminant analysis (PLDA) as the simi-

larity metric. Since each session is expected to have exactly two speakers, we continue the HAC

procedure until two clusters are constructed. As a post-processing step, adjacent speech segments

assigned to the same speaker are concatenated into a single speaker turn, allowing a maximum of

1 sec in-turn silence.

After diarization, we have the entire set of utterances clustered into two groups; however,

there is not a natural correspondence between the cluster labels and the actual speaker roles (i.e.,

therapist and client). For our purposes, speaker role recognition (SRR) is exactly the task of

finding the mapping between the two. We employ the speaker-level SRR approach used as baseline

in Chapter 2, with the text provided by the ASR subsystem (without lattice rescoring), since early

experiments showed that this approach gives perfect recognition results for all the sessions where

diarization accurately distinguishes the two interlocutors. Let’s denote the two clusters identified by

diarization as S1 and S2, each one containing the utterances assigned to the two different speakers.

We know a priori that one of those speakers is the therapist (T) and one is the client (C). In order to

do the role matching, two trained LMs, one for the therapist (LMT ) and one for the client (LMC),

are used. We then estimate the perplexities of S1 and S2 with respect to the two LMs and assign

to Si the role that yields the minimum perplexity. In case one role minimizes the perplexity for

both speakers, we first assign the speaker for whom we are most confident. The confidence metric

is based on the absolute distance between the two estimated perplexities3. The required LMs are

3-gram models trained with the SRILM toolkit (Stolcke, 2002), using the MI-train and CPTS4

corpora with mixing parameters 0.8 and 0.2, respectively.

2https://kaldi-asr.org/models/m6
3For more details, please also refer to Algorithm 1 (Chapter 2).
4Those datasets have been introduced in Chapter 1 and are also described in Appendix B.

79

https://kaldi-asr.org/models/m6


5.5.2 System with classification-based diarization

As an alternative, we explore the system of Figure 5.2, where the clustering-based diarization

is replaced by a classification-based one. In order to do so, we follow the approach developed

in Chapter 3 (Figure 3.2). The voiced segments derived from the VAD module are transcribed

with a first pass of ASR and are then sub-segmented based on the textual information. For text

segmentation we use the DeepSegment tool5, which uses a BiLSTM-CRF architecture, similar to

the one we built in Chapter 3. SRR is now performed at the turn level using the same LMs—LMT

and LMC—as in the baseline system of Section 5.5.1. In order to estimate the acoustic profiles (see

Section 3.3) we use the 50% of the role-annotated segments per session about which we are most

confident according to the perplexity-based criterion of equation (3.2). Those acoustic profiles are

then used during a PLDA-based classification: like in the baseline system, each voiced segment,

as predicted by VAD, is partitioned uniformly into subsegments of length equal to 1.5 sec with a

shift of 0.25 sec, and each subsegment is labeled as belonging to the interlocutor who maximized

the PLDA similarity. We use the same speaker representation as in the baseline system (employing

the CallHome x-vector extractor) for both the profile estimation and the sub-segmentation step.

As shown in Figure 5.2, after the linguistically-aided diarization (for which ASR outputs are

required), we have a second pass of ASR. The reason is that diarization defines different speech seg-

ments than the VAD-based ones used during the first pass and we wanted to have a fair comparison

with the baseline system, keeping all the other modules (apart from diarization/role recognition)

fixed. However, we should note that, as explained in Appendix B, the second ASR pass does not

yield improved recognition results (with respect to the estimated word error rates) compared to

the first pass.

5https://github.com/notAI-tech/deepsegment This is the same tool used for the utterance segmentation module
of both systems (Figures 5.1 and 5.2) before behavioral coding—see also Appendix B.

80

https://github.com/notAI-tech/deepsegment


5.6 Analysis and Results

5.6.1 Speaker diarization

We first evaluate the two different diarization systems described in Section 5.5. The standard

evaluation metric, that we have also used in Chapters 3 and 4, is the diarization error rate (DER;

Anguera et al., 2012) and it incorporates three sources of error: false alarms (the percentage of

speech in the output but not in the ground truth), missed speech (the percentage of speech in the

ground truth but not in the output), and speaker error (the percentage of speech assigned to the

wrong speaker cluster after an optimal mapping between speaker clusters and true speaker labels).

However, false alarm here is not representative of the algorithms’ performance because of the specific

implementation followed. In particular, we chose to concatenate adjacent speech segments assigned

to the same speaker, if there is not a silence gap between them greater that 1 sec. This step increases

DER, since it labels short non-voiced segments as belonging to some speaker, thus introducing false

alarms. However, it creates longer speaker-homogeneous segments, which is beneficial to ASR, and,

hence, to the overall system. What is important for the downstream task is to identify the therapist

speech, and for that reason, we want to minimize missed speech and speaker error. Results with

respect to those metrics are reported in Table 5.3. Those are estimated using the NIST md-eval.pl

tool, with a forgiveness collar of 0.25 sec around each speaker boundary.

Table 5.3: Diarization results (%) for the UCC data.

diarization method missed speech speaker error

clustering-based 0.5 7.6
classification-based 0.5 4.9

clustering-based refers to the system of Figure 5.1 and
classification-based refers to the system of Figure 5.2.

We can see that the overall diarization performance is improved by the classification-based

system, thus validating the results of Chapter 3. However, a per-session analysis revealed that

most of this performance gap is due to a handful of sessions for which the traditional, clustering-

based diarization essentially failed, with a reported speaker error rate as high as 50%. At the same

time, the clustering-based system occasionally performs even better than the classification-based

one for sessions under clean acoustic conditions and featuring speakers with very dissimilar acoustic
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characteristics (e.g., male vs. female). In order to get the best of both words, and to avoid the

increased computational complexity of the classification-based system whenever this is not needed6,

we propose to start with the clustering-based system for all the sessions and apply a simple proxy

of diarization performance. If, according to this proxy, the clustering-based diarization fails, we

halt processing and re-run diarization, using the classification-based, linguistically-aided system

this time.

According to our proxy, the percentage of speech assigned to each one of the two speakers

should be at least m% of the total speaking time, with m = 10 for the results reported here7. Since

we deal with dyadic conversational scenarios, it is expected that each of the two speakers talks

for a substantial amount of time. Even though therapy is not a normal dialogue and the provider

often plays more the role of the listener (Hill, 2009), if one of the two interlocutors seems to not be

participating in the conversation, then we are highly confident there is some problem. This may

be an issue associated either with the audio quality, or with high speaker error introduced by the

diarization module because the two speakers have similar acoustic characteristics.

Per-session results in terms of speaker error rate (SER) when using either the clustering-based

or the classification-based system for all the sessions, or a combination of those based on the

described threshold, are given in Figure 5.3. As we can see (Figure 5.3a), our quality safeguard

is a reasonable proxy of diarization performance: most of the sessions with high estimated SER

(more than 15%) are sessions where the speaking time of one of the interlocutors is very low (less

than 10%), suggesting that the two speaker clusters were collapsed into one. When we choose to

continue processing those sessions using the classification-based system (Figure 5.3c), the problem

is alleviated.

6Note that the specific implementation of the classification-based system requires applying ASR and extracting
x-vectors twice.

7This was one of the quality safeguards incorporated within the original system, presented in (Flemotomos et al.,
2021). Since this system was designed with real-world deployment in mind, it was important to incorporate specific
quality safeguards that help us both identify potential computational errors, including ones due to diarization, and
determine whether the input was an actual therapy session or not (e.g., whether the therapist pushed the recording
button by mistake). Based on those safeguards, if certain quality thresholds were not met, then the final report was
not generated and feedback was not provided for the specific session. Instead, an error message was displayed to the
counselor.
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Figure 5.3: Speaker error rate (SER) per UCC session for the different system designs illustrated
in Figures 5.1 and 5.2. In (c), we use the classification-based system for the sessions where the
speaking time of each speaker is not at least 10% of the overall speaking time according to the
clustering-based diarization output.

5.6.2 Psychotherapy evaluation

When diarization fails, the error is propagated throughout the entire pipeline and the system cannot

accurately code the therapist utterances. In fact, for seven of the sessions where the clustering-

based diarization algorithm failed to sufficiently distinguish between the two speakers, the subse-

quent speaker-level SRR module (Figure 5.1) failed to find the right mapping between roles and

speakers. This is not the case when for the “problematic” sessions we use the linguistically-aided,

classification-based diarization where role assignment is done at the turn level (Figure 5.2). When

we compare the total number of utterances per session that have been assigned to the therapist

by the human annotators and by the automated systems, the Spearman correlation is increased

from 0.478 (p < 10−7) in the clustering-based system to 0.561 (p < 10−9) in the system that uses

either the clustering or the classification-based diarization according to the minimum speaking time

criterion8.

This behavior is reflected in the final evaluation of the overall system performance, as well. Eval-

uation with respect to utterance-level behavioral coding is not straightforward, since the utterances

8Those numbers correspond to the utterances predicted by the system after the utterance segmentation module
(Figures 5.1 and 5.2).
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given to the MISC predictor after automatic transcription are not the same as the ones defined

by human transcribers. In that case, we use as a simple evaluation metric the correlation between

the tallies, i.e., the counts of each MISC label in the manual coding trial and in the automatically

generated report. The results are given in Table 5.4.

Table 5.4: Spearman correlation coefficients for the per-session counts
of the utterance-level MISC labels between the manually-derived codes
and the machine-generated ones for different diarization approaches.

MISC clustering-based classification-based combination

FA 0.194∗ 0.309† 0.305�

GI 0.639† 0.507† 0.627†

RES 0.303∗ 0.187∗ 0.235∗

REC 0.388† 0.502† 0.447†

QUC 0.634† 0.475† 0.639†

QUO 0.524† 0.741† 0.753†

MIA 0.451† 0.576† 0.596†

MIA 0.455† 0.390† 0.474†

ST 0.428† 0.549† 0.581†

mean 0.446 0.471 0.517

clustering-based refers to the system of Figure 5.1 and classification-based
refers to the system of Figure 5.2.
combination: use the classification-based system for the sessions where the
speaking time of each speaker is not at least 10% of the overall speaking time
according to the clustering-based system.
†p < 0.001, �p < 0.01, ∗p < 0.05

We additionally report results with respect to session-level functionals commonly used in MI

research. Those are the the ratio of reflections to questions (Re2Qu), the percentage of open

questions out of all the questions (QUO2Qu), the percentage of complex reflections out of all the

reflections (REC2Re), the MI adherence (MI-Adh), defined as the percentage of utterances not

assigned the MIN code, as well as the ratio of therapist-attributed over client-attributed speaking

time (Ther2Cl). As shown in Table 5.5, Re2Qu and QUO2Qu are reflected more accurately—on

average, taking all sessions into account—with the combination approach. With respect to MI-

Adh and Ther2Cl, results are better when only the classification-based diarization is used for all

the sessions. The only metric for which the clustering-based approach yields the best results is

REC2Re; however, Spearman correlations are not statistically significant for the particular metric.

The reason behind the low overall performance with respect to the REC2Re metric is that our text-
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based MISC prediction algorithm had a high confusion rate between complex and simple reflections9

(see also Appendix B).

Table 5.5: Spearman correlation coefficients for the session-level MISC
aggregate metrics between the manually-derived codes and the machine-
generated ones for different diarization approaches.

metric clustering-based classification-based combination

Re2Qu 0.324 0.428 0.452
QUO2Qu 0.527 0.575 0.698
REC2Re 0.172 0.087 0.154
MI-Adh 0.354 0.509 0.418
Ther2Cl 0.720 0.823 0.815

clustering-based refers to the system of Figure 5.1 and classification-based refers
to the system of Figure 5.2.
combination: use the classification-based system for the sessions where the speak-
ing time of each speaker is not at least 10% of the overall speaking time according
to the clustering-based system.
All correlations are significant (p < 0.001), apart from REC2Re (p > 0.05).

5.7 Conclusion

In this chapter we explored speaker role information and the impact it has on a real-world appli-

cation. In particular, we presented a processing pipeline used to automatically evaluate recorded

dyadic psychotherapy sessions, where accurate estimation of when a therapist talks is critical, since

therapist-attributed speech needs to be coded at the utterance level. We applied the linguistically-

aided, role-based diarization approach that we presented in Chapter 3 and we compared it with

a traditional clustering-based diarization algorithm to study how diarization output can affect

the downstream task of psychotherapy quality assessment. Experimental results showed that the

linguistically-aided method can significantly outperform the baseline, especially for sessions where

the latter fails to identify the two different speakers within the session, and thus the subsequent

behavioral coding algorithm is not provided with accurate input.

Here we proposed first trying to process all the sessions with the simpler, and computationally

less expensive, clustering-based system and only employing the linguistically-aided diarization for

9In the original system deployed in clinical settings, we have grouped complex and simple reflections into a single
composite “reflections” label when generating the feedback report.
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sessions where the first system failed. Since we cannot directly evaluate the diarization performance

on unseen sessions, we used a quality proxy based on the minimum expected speaking time of

the two interlocutors. More sophisticated combination methods (e.g., Stolcke & Yoshioka, 2019)

and/or confidence metrics (e.g., Vaquero, Ortega, Miguel, & Lleida, 2013) for diarization systems

can potentially further improve the final results.

The application of a competency rating tool, like the one we presented, in clinical settings could

guarantee the provision of fast and low-cost feedback. Performance-based feedback is an essential

aspect both for training new therapists and for maintaining acquired skills, and can eventually lead

to improved quality of services and more positive clinical outcomes. Additionally, being able to

accurately record, transcribe, and code interventions at large scale opens up ample opportunities

for psychotherapy research studies with increased statistical power.
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Conclusions and Future Directions

Summary and Main Contributions

In the previous chapters I proposed various methods to recognize speaker roles and use the inferred

information to facilitate speech processing tasks. A main motivation behind the research conducted

has been the reduction of error propagation in pipelined architectures for speech-based applications.

In Chapter 1 I showed that combining audio-based speaker clustering with language-based role

recognition at the turn level can lead to substantial performance gains for the task of speaker role

recognition (SRR). The linguistic information used for this work, however, was extracted from

manual transcriptions. In Chapter 2 I extended the ideas behind language-based SRR for a more

realistic scenario where the textual information is drawn from automatically derived transcripts. I

did so by producing role-specific ASR outputs, suitably rescoring the decoding lattices produced by

a generic ASR system. The proposed approach also led to slight improvements in ASR performance.

Moving to a different speech processing task, in Chapters 3 and 4 I utilized role-related informa-

tion to improve the performance of speaker diarization, when applied in conversational interactions

where speakers assume dissimilar roles. In particular, in Chapter 3 speaker roles were used to

construct the acoustic profiles of the interlocutors, thus enabling us to convert speaker diariza-

tion from a clustering problem to a classification one. This method, however, assumed that every

speaker in the conversation is mapped to a single role and vice-versa. In Chapter 4, I presented a

more generic framework, where linguistic, role-based information is used to impose segment-wise

constraints during the subsequent step of audio-based clustering.

Finally, in Chapter 5 I presented an end-to-end speech and language processing pipeline de-

veloped to transcribe and evaluate psychotherapy sessions to provide performance-based feedback
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to therapists. Speaker diarization and role recognition are crucial components within this compe-

tency rating tool, and I showed how employing a role-aided diarization approach can reduce error

propagation and lead to improved overall results.

Directions for Future Work

This dissertation has focused on the computational analysis of formal speaker roles within conversa-

tional interactions and on ways that role information can be used to facilitate core speech processing

tasks, such as speaker diarization. With the evolution and success of end-to-end neural architec-

tures, an exciting area of future research is towards unified frameworks where role recognition and

other speech processing modules, such as speech recognition and speaker diarization, are combined

together. Early works towards that direction have shown promising results, but leave ample room

for improvements and further research (El Shafey, Soltau, & Shafran, 2019; Flemotomos, Chen,

Atkins, & Narayanan, 2018).

An assumption made throughout this work is that the role concepts we study remain static

during a single interaction. Even though this is in general true for formal roles (e.g., patient vs.

doctor), informal roles emerge as a result of interpersonal dynamics and can change over the course

of a conversation (Dowell et al., 2019). An interesting direction for future work would be an

extension of the tools presented here to the analysis of informal, emergent roles, incorporating this

additional element of temporal variability.

Both formal and informal roles can be manifest through specific behavioral patterns; this has

been the main overarching idea behind the various models proposed in the previous chapters.

However, how an individual behaves within a specific group and under specific circumstances is a

function of various aspects, including personality traits and other dimensions of identity. A role

that an individual assumes can be viewed as just one such dimension (Hare, 1994). Future research

efforts could focus on the analysis and modeling of the relationship between speaker roles and

identity characteristics, such as gender, age, and personality.

Finally, an exciting prospect would be the incorporation of role-specific information in voice

assistants. While smart conversational agents are becoming part of our everyday lives, generic re-

sponses and lack of emotional intelligence remain a shortfall of dialogue generation models, posing
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obstacles to carrying long and naturalistic conversations (Roller et al., 2021). Allowing intelli-

gent agents to assume specific roles and adopt role-aware behaviors would potentially give them

more human-like conversational characteristics and would make them more adaptive to different

environments.
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Appendix A

UCC dataset: Inter-Rater Reliability

In Chapter 5 we presented and used the MISC-annotated UCC data (which we also used in Chap-

ter 4 but without the MISC labels). Here, we present an inter-rater reliability (IRR) analysis of the

utterance-level codes assigned by human raters based on a small subset of the available sessions.

Each of the 188 sessions that were selected for professional transcription and coding was coded

by at least one of three trained raters. Among those, 14 sessions (from the first trial described in

Section 5.4.2) were coded by two or three coders. We estimated Krippendorff’s alpha (Krippendorff,

2018) for each code, a statistic which is generalizable to different types of variables and flexible

with missing observations (Hallgren, 2012). Since sessions were parsed into utterances from human

raters, the unit of coding is not fixed, so we estimated Krippendorff’s alpha at the session level by

using the per-session occurrences (treated as ratio variables) of each label. The results for all the

codes are given in Table A.1.

Table A.1: Krippendorff’s alpha (α) to estimate inter-rater reliability for the
utterance-level codes in the UCC data.

code IRR (α) code IRR (α) code IRR (α) code IRR (α)

ADP 0.542∗ EC 0.558 QUC 0.897 RF 0.093∗

ADW 0.422 FA 0.868 RCP –∗ SU 0.345
AF 0.123 FI 0.784 RCW 0.000∗ ST 0.434
CO 0.497∗ GI 0.861 RES 0.268 WA -0.054∗

DI 0.590 QUO 0.945 REC 0.478

MISC abbreviations are defined in Table 5.1.
∗the particular code was not used (count=0) by at least 2 coders for at least half of
the analyzed sessions.
RCP was never used by any coder.
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As described in Section 5.4.2, those MISC labels are grouped into 9 target classes (Table 5.2).

Table A.2 gives the results of the IRR analysis for this labeling scheme.

Table A.2: Krippendorff’s alpha (α) to estimate inter-rater
reliability for the utterance-level target labels in the UCC data.

group IRR (α) group IRR (α) group IRR (α)

FA 0.868 QUO 0.946 MIN 0.606
GI 0.898 REC 0.479 MIA 0.363
QUC 0.897 RES 0.268 ST 0.434

The mapping bettween MISC-defined behavior codes and grouped
target labels is given in Table 5.2.
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Appendix B

Psychotherapy Transcription

and Coding Pipeline

The following sections provide details related to the several modules of the transcription and coding

pipeline introduced in Chapter 5, including training data, hyperparameter values, and evaluation

results.

B.1 Datasets

The design of the system is based on datasets drawn from a variety of sources. We have combined

large speech and language corpora both from the psychotherapy domain and from other fields

(meetings, telephone conversations, etc.). That way, we wanted to ensure high in-domain accuracy

when analyzing psychotherapy data, but also robustness across various recording conditions.

Out-of-domain corpora

The acoustic modeling was mainly based on a large collection of speech corpora, widely used

by the research community for a variety of speech processing tasks. Specifically, we used the

Fisher English (Cieri et al., 2004), ICSI Meeting Speech (Janin et al., 2003), WSJ (Paul & Baker,

1992), and 1997 HUB4 (Graff, Wu, MacIntyre, & Liberman, 1997) corpora, available through the

linguistic data consortium (LDC), as well as Librispeech (Panayotov, Chen, Povey, & Khudanpur,

2015), TED-LIUM (Rousseau, Deléglise, & Esteve, 2014), and AMI (Carletta et al., 2005). This
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combined speech dataset consists of more than 2,000 hours of audio and contains recordings from

a variety of scenarios, including business meetings, broadcast news, telephone conversations, and

audiobooks/articles.

The aforementioned datasets are accompanied by manually-derived transcriptions which can be

used for language modeling tasks. In our case, since we need to capture linguistic patterns specific

to the psychotherapy domain, the main reason we need some out-of-domain text corpus is to build

a background model that guarantees a large enough vocabulary and minimizes the unseen words

during evaluation. To that end, we use the transcriptions of the Fisher English corpus, featuring a

vocabulary of 58.6K words and totaling more than 21M tokens.

Psychotherapy-related corpora

In order to train and adapt our machine learning models on in-domain data, in addition to the UCC

data collection described in Section 5.4.2, we also used available psychotherapy-focused corpora. In

particular, we used a collection of MI sessions (for which audio, transcription and manual coding

information were available) from six independent clinical trials (ARC, ESPSB, ESP21, iCHAMP,

HMCBI, CTT; Atkins et al., 2014; Baer et al., 2009), as introduced in Chapter 1 (with the MI-train

subset defined in Table 1.1). The transcripts of those MI sessions were enhanced by data provided

by the counseling and psychotherapy transcripts series1 (CPTS). This included transcripts from a

variety of therapy interventions totaling about 300K utterances and 6.5M words. For this corpus,

no audio or behavioral coding are available, and the data were hence used only for language-based

modeling tasks.

B.2 System Details

Audio feature extraction

For all the modules of the speech pipeline (VAD, diarization, ASR), the acoustic representation is

based on the widely used mel-frequency cepstrum coefficients (MFCCs), extracted every 10 msec

1https://alexanderstreet.com/products/counseling-and-psychotherapy-transcripts-series
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using 25 msec-long windows with the Kaldi toolkit2. For the UCC data, the channels from the

two recording microphones are combined through acoustic beamforming (Anguera, Wooters, &

Hernando, 2007), using the open-source BeamformIt tool3.

Voice activity detection

The first step of the transcription pipeline is to extract the voiced segments of the input audio

session. The rest of the session is considered to be silence, music, background noise, etc., and is not

taken into account for the subsequent steps. To that end, we use a feed-forward neural network

with two layers of 512 neurons each and sigmoid activation functions, before a final inference layer

giving a frame-level probability. The input is a 13-dimensional MFCC vector characterizing a frame,

spliced with a context of 30 neighboring frames (15+15).

This is a pre-trained model, initially developed as part of the robust automatic transcription

of speech (RATS) program (Thomas, Saon, Van Segbroeck, & Narayanan, 2015). The model was

trained to reliably detect speech activity in highly noisy acoustic scenarios, with most of the noise

types included during training being military noises like machine gun, helicopter, etc. Hence, in

order to make the model better suited to our task, the original model was adapted using the UCCdev

data. Optimization of the various parameters was done with respect to the unweighted average

recall (UAR). The frame-level outputs are smoothed via a median filter of 31 taps and converted

to longer speech segments which are passed to the diarization sub-system. During this process, if

silence between any two contiguous voiced segments is less than 0.5 sec, the corresponding segments

are merged together.

Automatic speech recognition

The linguistic content captured within speech segments is the information supplied to the subse-

quent text-based algorithms used for speaker role recognition, lignuistically-aided diarization, and

behavioral coding. Automatic speech recognition (ASR) depends on two components; the acoustic

model (AM), which calculates the likelihood of acoustic observations given a sequence of words,

2https://github.com/kaldi-asr/kaldi
3https://github.com/xanguera/BeamformIt
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and the language model (LM), which calculates the likelihood of a word sequence by describing the

distribution of typical language usage. We note that, for the system depicted in Figure 5.2, the

same ASR module is used for both the first and the second passes.

In order to train the AM, we build a time-delay neural network (TDNN) with subsampling (Ped-

dinti, Povey, & Khudanpur, 2015). First, word alignments are derived based on the GMM/HMM

paradigm. The input feature vectors to the TDNN architecture are 40-dimensional MFCCs which

are augmented by 100-dimensional i-vectors, extracted online through a sliding window. The net-

work is trained on a large combined speech dataset composed of the Fisher English, ICSI Meeting

Speech, WSJ, 1997 HUB4, Librispeech, TED-LIUM, AMI, and MI corpora. We use the officially

recommended training subsets for Librispeech and TED-LIUM and the recommended training and

development sets for AMI. We randomly choose 95% of the available Fisher utterances and 80% of

the available ICSI, WSJ, and HUB4 utterances. We also use the 242 MI-train sessions (Table 1.1).

We have kept the rest of the combined dataset for internal validation and evaluation of the ASR

system. Among the aforementioned corpora, TED-LIUM and the clean portion of Librispeech are

augmented with speed perturbation, noise, and reverberation (Ko, Peddinti, Povey, & Khudanpur,

2015). The final combined, augmented corpus contains more than 4,000 hours of phonetically rich

speech data, recorded under different conditions and reflecting a variety of acoustic environments.

The ASR AM is built and trained using the Kaldi speech recognition toolkit (Povey et al., 2011).

In order to build the LM, we independently train two 3-gram models using the SRILM toolkit

(Stolcke, 2002). One is trained with in-domain psychotherapy data from the CPTS transcribed

sessions. This is interpolated with a large background model, in order to minimize the unseen

words during inference. The background LM is trained with the Fisher English corpus, which

features conversational telephone data. The two 3-gram LMs are interpolated with mixing weights

equal to 0.8 for the in-domain model and 0.2 for the background model.

The evaluation of an ASR system is usually performed through the word error rate (WER)

metric which is the normalized Levenshtein distance between the ASR output and the manually-

derived transcript and includes errors because of word substitutions, word deletions, and word

insertions. Those errors are typically estimated for each utterance given to the ASR module and

then summed up for all the evaluation data, in order to get an overall WER. However, when

we analyze an entire therapy session which has been processed by the VAD and diarization sub-
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systems, the “utterances” are different than the ones identified by the human transcriber. In that

case, we evaluate at the session level, concatenating all the session utterances. The results are

reported in Table B.1 using either the oracle segmentation (from the manual transcriptions) or the

one generated by the automated systems. For the latter case, we explore VAD-only segmentation

(after which we run the first pass of ASR needed for the linguistically-aided diarization as shown in

Figure 5.2), as well as the two diarization-based segmentation approaches we explored in Chapter 5:

the audio-only, clustering-based one and the linguistically-aided, classification-based one.

Table B.1: ASR results (%) for the UCC data.

diarization method substitutions deletions insertions WER

oracle 15.1 14.1 2.6 31.7
VAD 16.4 12.5 3.2 32.0
clustering-based 16.8 12.9 3.2 32.9
classification-based 17.2 12.8 3.4 33.4

WER is estimated as the sum of the substitution, insertion, and deletion rates.
Results are reported when using either the segments derived by the manual tran-
scriptions (oracle) or the machine-generated ones, based on only VAD, or based on
the two different diarization methods we have explored (Section 5.5).

As we can see, ASR performance is not severely degraded by error propagation due to the pre-

processing steps of VAD/diarization (up to about 5% relative WER increase). However, we do note

that the degradation observed between the VAD-based and the diarization-based segmentations

suggests that ASR can completely precede diarization and an alternative overall architecture than

the ones presented in Chapter 5 might provide improved overall performance. This is a direction

we did not explore within this study.

Interestingly, comparing the oracle and the machine-generated segmentations, we can see that

even though insertion rate is increased, deletion rate is decreased when machine-generated segments

are provided. This is explained by the long segments constructed after concatenating consecutive

segments given by the VAD and diarization algorithms. On the one hand, labeling silence or noise

as “speech” associated with some speaker occasionally leads ASR to predict words where in reality

there is no speech activity—thus increasing insertion rate. On the other hand, this minimizes the

probability of missing some words because of missed speech. Such deleted words may occur when

providing the oracle segments because of inaccuracies during the construction of the “ground truth”

through forced alignment.
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We note that, even though the estimated error is high, WERs in the range reported and even

higher are typical in spontaneous medical conversations (Kodish-Wachs et al., 2018). Error analysis

revealed that those numbers are inflated because of fillers (e.g. uh-huh, hmm) and other idiosyn-

crasies of conversational speech. It should be additionally highlighted that WER is a generic metric

that gives equal importance to all the words, while for our end goal of behavior coding there are

specific linguistic constructs which potentially carry more valuable information than others.

Utterance segmentation

The ASR output is at the segment level, with segments defined by the VAD and diarization algo-

rithms. However, silence and speaker changes are not always the right cues to help us distinguish

between utterances, which are the basic units of behavioral coding. The presence of multiple utter-

ances per speaker turn is a challenge we often face when dealing with conversational interactions.

Especially in the psychotherapy domain, it has been shown that utterance-level segmentation can

significantly improve the performance of automatic behavior code prediction (Z. Chen et al., 2021).

Thus, we have included an utterance segmentation module at the end of the automatic tran-

scription, before employing the subsequent NLP algorithms. In particular, we merge together all the

adjacent segments belonging to the same speaker in order to form speaker-homogeneous talk-turns,

and we then segment each turn using the DeepSegment tool4. DeepSegment has been designed to

perform text-based sentence boundary detection having specifically ASR outputs in mind, where

punctuation is not readily available. In this framework, sentence segmentation is viewed as a se-

quence labeling problem, where each word is tagged as being either at the beginning of a sentence

(utterance), or anywhere else. DeepSegment addresses the problem employing a bidirectional long-

short term memory (BiLSTM) network with a conditional random field (CRF) inference layer (Ma

& Hovy, 2016), similarly to the tagger architecture we used in Chapter 3 (Figure 3.3).

4https://github.com/notAI-tech/deepsegment
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Utterance-level code prediction

Once the entire session is transcribed at the utterance level, we employ text-based algorithms for

the task of behavior code prediction. We focus on counselor behaviors, so we only take into account

the utterances assigned to the therapist according to the speaker role recognition module. Each

one of those needs to be assigned a single code from the 9 target labels summarized in Table 5.2.

This is achieved through a BiLSTM network with attention mechanism (Singla et al., 2018) which

only processes textual features. The input to the system is a sequence of word-level embeddings

for each utterance. The recurrent layer exploits the sequential nature of language and produces

hidden vectors which take into account the entire context of each word within the utterance. The

attention layer can then learn to focus on salient words carrying valuable information for the task

of code prediction, thus enhancing robustness and interpretability.

The network is first trained on the MI data using the Adam optimizer with learning rate equal

to 0.001 and exponential decay equal to 0.9. The batch size is set equal to 256 utterances and

we use class weights inversely proportional to the class frequencies. The system is trained on that

dataset for 30 epochs with an early stopping strategy, keeping the model with the lowest validation

loss. The system is further fine-tuned to the University Counseling Center conditions by continuing

training on the UCCtrain data.

When we use the manually transcribed data to perform utterance-level MISC code prediction,

the overall averaged F1 score is 0.517 for the UCC evaluation sets. The F1 scores for each individual

code are reported in Table B.2. As expected, the results are better for the highly frequent codes

(Table 5.2), such as the one expressing facilitation (FA), since the machine learning models have

more training examples to learn from. On the other hand, the models do not perform as well

for less frequent codes, such as MI-NonAdherent behaviors (MIN) and simple reflections (RES).

Comparing Table B.2 and Table A.1, we can also see that for several of the codes that our system

performs relatively poorly (e.g., simple reflections (RES), MI-Adherent (MIA), structure (ST)), the

inter-annotator agreement is also considerably low. A notable example which does not follow this

pattern is the non-adherent behavior (MIN) where the performance of our system is relatively poor

(F1 = 0.261), while there is a substantial inter-annotator agreement (α = 0.606). This is partly

because of the underrepresentation of the particular code (or cluster of codes) in the training and
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development sets. It may be also the case that pure linguistic information found in textual patterns

may not be enough for the operationalization of the particular code. This example suggests that a

hybrid approach where machine learning methods are combined with knowledge-based rules from

the coding manuals may be an interesting direction for future research. Finally, by examining the

confusion matrices (not reported here), we realized that the system often gets confused between

the codes representing questions (QUC vs. QUO) and reflections (RES vs. REC), since those pairs

of codes get usually assigned to utterances with several structural and semantic similarities.

Table B.2: F1 scores for the predicted utterance-level codes using the
manually transcribed UCC data.

FA GI QUC QUO REC RES MIN MIA ST

0.951 0.473 0.604 0.792 0.476 0.198 0.261 0.423 0.472

It is interesting to compare the remarkably good performance of the system with respect to FA

with the relatively low correlation reported in Table 5.4, where the MISC predictor is given the

automatically generated utterances. The reason behind this is that FA is assigned to a lot of one-

word utterances and talk turns. Our speech pipeline, however, often fails to capture turns of such

short duration (or concatenates them with neighboring utterances to construct longer segments)

which results in a smaller than expected frequency for the specific code.

121


