
Automatic Speech Recognition
HMM/GMM Paradigm and WFST Framework

Nikolaos Flemotomos
Signal Analysis and Interpretation Laboratory

University of Southern California

Most of the content in this manuscript has been adapted from specific chapters in my
thesis “Robust Acoustic Features for Distant Speech Recognition” for my Diploma in
Electrical and Computer Engineering at the National Technical University of Athens

(March, 2016).

Current version (translated from the Greek language and revised): March, 2019

2

Contents

1 Automatic Speech Recognition 5
1.1 Feature Extraction . 5
1.2 Acoustic Model . 6

1.2.1 Hidden Markov Models . 7
1.2.2 Gaussian Mixture Models . 9
1.2.3 Training the Acoustic Model . 10
1.2.4 Tied States and Decision Trees . 13
1.2.5 Forced Alignment . 15

1.3 Language Model . 15
1.3.1 Statistical Language Modelling with n-gram Models 16
1.3.2 Smoothing Using the Witten-Bell Method 17

1.4 Search and Decoding . 18
1.5 Recognition Evaluation . 21

2 Weighted Finite-State Transducers 23
2.1 Main Definitions . 23
2.2 Basic Operations . 26

2.2.1 Rational Operations . 26
2.2.2 Projection, Inversion, and Composition 27

2.3 Optimization Operations . 28
2.4 WFSTs and Speech Recognition . 30

2.4.1 Construction of the Components . 32
2.4.2 Composition and Optimization . 35

3 Feature Sets for ASR 39
3.1 Mel Frequency Cepstrum Coefficients (MFCCs) 39

3.1.1 Extraction of MFCCs . 39
3.1.2 Cepstral Mean (& Variance) Normalization 43
3.1.3 Derivatives of MFCCs . 44
3.1.4 Delta-Spectral Cepstal Coefficients 44

3.2 Perceptual Linear Prediction (PLP) and RASTA Analysis 45
3.2.1 PLP Analysis and Feature Extraction 45
3.2.2 Robust Features Using RASTA Analysis 50

3.3 Power Normalized Cepstral Coefficients (PNCCs) 52

Bibliography 57

3

4 Contents

Chapter 1

Automatic Speech Recognition

1.1 Feature Extraction

For the task of speech recognition, we should first of all find the suitable feature sets
which have the ability to distinguish a part of the speeh signal from another one, while
grouping similar parts together, in such a way that finally the same phonemes are grouped
together and can be distinguished from all the others. Thus, when it is time to recognize
a new phoneme, we hope that its features will be such that it will be successfully clustered
into the right group.

Several such feature sets have been proposed, each one of which requires a specific
procedure of processing the speech signal. In this Section we will mention the elementary
rules behind all the relevant procedures and mainly the importance and the qualitative
analysis of “feature extraction”. Details on specific sets can be found in Chapter 3.

Initially, speech signal is nothing more than a longitudinal wave, which is a sequence
of compressions and rarefactions propagating in the air, thanks to the elastic property
of the latter [1]. To represent and store such a signal in a copmuter the first step is to
record it throuhg a microphone. Microphone is a transducer which converts the acoustical
signal into an electrical one, or, in other words, the acoustical sound energy into electrical
energy. In the case of an ideal microphone (a non-existent machine which we are using in
our analysis for simplicity), the produced electrical waveform should have the exact same
characteristics as the acoustical waveform, with the compressions in the air corresponding
to positive electric potentials and the rarefactions corresponding to negative potentials.

In the simplest case, the sound wave bumps into a thin metal wire called diaphragm,
causing its vibration with a frequency equal to the wave frequency. The vibration of the
diaphragm takes place inside a static magnetic field. But the movement of a conductor
perpendicular to the magnetic field lines has as a result the flowing of electric current
through the conductor. Thus, alternating current flows in the closed circuit of the micro-
phone and the frequency is the same as the frequency of the sound wave. This current is
the electrical output of the microphone.

The next step is the conversion of the analog electrical signal into a digital one through
two processes; namely sampling, which is the periodic measurement of its amplitude,
and quantization, which is the mapping of real values into discrete bins which can be
represented by a finite number of bits (e.g. 8 or 16) [2]. In order for the sampled signal
to be an accurate and unique representation of the initial signal, the sampling frequency
should satisfy the Nyquist condition, according to which it should be at least double

5

6 Chapter 1

the maximum frequency of the signal, given that the signal is band-limited [3]. Even
though the speech signal is not strictly band-limited, its frequency-domain information is
rapidly reduced in high frequencies, while almost the entire information in human speech is
below 10kHz, thus a sampling frequency equal to 20Khz is sufficient. Telephone speech is
filtered and, as a result, all the information is below 4kHz, which means that for telephone
speech processing the sampling rate is usually 8kHz. The most common and widely used
sampling frequency for human speech recorded by microphones, and for the purposes of
Automatic Speech Recognition, is 16kHz.

After the aforementioned process, the speech signal is represented as a sequence of
quantized samples. Subsequently, the signal is segmented into small, usually overlapped,
frames of fixed length. Even though there have been approaches on using frames of
duration up to 200−300msec, traditionally the common frame length is about 10−30msec.

The main idea behind windowing the signal is based on that: Speech is a random
signal with large variations through time, without some periodicity and without satisfying
the necessary conditions of stationarity in the general case. However, both its time and
spectral features can be considered fixed for segments of length equal to 10− 30msec [3].
This short-time sationarity of human speech gives the opportunity of using classic digital
signal processing techiques, such as the Fourier analysis, which would be impossible to use
directly on the signal before framing.

Through the desired feature extraction module, each frame is represented by a vector
in Rd. Denoting as oi the vector which represents the ith frame, we get the sequence
O = o1,o2,o3, · · · , which is called the sequence of observations. The task of Automatic
Speech Recognition is now reduced to finding the most probable word sequence Ŵ =
ŵ1, ŵ2, ŵ3, · · · , given the observation sequence O 1. Formally, we have

Ŵ = argmax
W∈W

P (W |O) , (1.1)

where W is the set of possible word sequences and the estimation of the probability
P (W |O) is based on the acoustic and language models. In particular, according to the
Bayes rule,

P (W |O) =
p(O|W)P (W)

P (O)
, (1.2)

thus we get
Ŵ = argmax

W∈W
p(O|W)P (W) , (1.3)

where p(O|W) is the acoustic likelihood of O for W and P (W) is the prior probability of
W [4].

1.2 Acoustic Model

By the term “acoustic model” we refer to the statistical model which is used during
speech recognition for the computation of the acoustic likelihood p(O|W). If the sequence
of observations O was generated by the sequence of words W , this likelihood is expected
to have a large value.

1It is noted that there is not a one-to-one correspondence between the indices of the elements in O and
the elements in W .

1.2 Acoustic Model 7

1.2.1 Hidden Markov Models

In practice, the most commonly used acoustic models are Hidden Markov Models
(HMMs), and in particular, left-right HMMs with allowed transitions only between con-
secutive states or self-loops, which are also called linear HMMs [5]. The structural form
of such an HMM is illustrated in Figure 1.1iv.

(i) Ergodic (ii) Left-Right

(iii) Parallel Left-Right (iv) Linear

Figure 1.1: Examples of HMM topologies. Linear HMMs are the ones which are mainly used in
Automatic Speech Recognition.

Formally, any HMM is fully defined by the 6-tuple [6]

λ = {Q,V,A,B, π, F} , (1.4)

where

� Q = {q1, q2, · · · , qN} is a finite set of states,

� V = {v1,v2, · · · ,vM} is a finite set of observations that the HMM can produce (one
observation per state),

� A = {aij}, i, j = 1, · · · , N is the set of the transition probabilities from a state i to
a state j:

aij = P (qj in t+ 1|qi in t),
∑
j

aij = 1 , (1.5)

� B = {bj(k)}, j = 1, · · · , N, k = 1, · · · ,M is the set of probabilities (or probability
distributions) of producing an observation vk from a state qj :

bj(k) = P (vk in t|qj in t),
∑
k

bj(k) = 1 , (1.6)

8 Chapter 1

� π = {πi}, i = 1, · · · , N is the set of initial state probabilities:

πi = P (qi in t = 1),
∑
i

πi = 1 , (1.7)

� F is a finite set of final states, subset of V .

A possible observation in a state is a d-dimensional vector, as it has been computed
during the feature extraction step. Since in the general case the elements of the vector
can have any value on the real axis, without any quantization, the models in use are
usually continuous, thus the condition (1.6) becomes

∫∞
−∞ bj(x)dx = 1. According to

the definition, any observation generated by the HMM when this is in a particular state,
depends only on that state and not on previous ones. In other words, in an HMM, Markov
assumption holds.

The acoustic likelihood with an HMM, that is the probability that an HMM with
parameters λ generates a sequence of observations O, is computed in practice using the
Viterbi algorithm, based on the most probable sequence of states Q∗. The so-called Viterbi
score is given as

PV = max
Q

P (O,Q|λ) = P (O,Q∗|λ) (1.8)

= max
q1,q2,··· ,qT

{
πq1bq1(o1)aq1q2bq2(o2) · · · aq(T−1)qT bqT (oT)

}
= max

i
δT (i) , (1.9)

where we have defined the recursive function

δt(i) =

{
πibi(o1) , t = 1
max
i
{δt−1(i)aij} bj(ot) , t = 2, 3, · · · , T . (1.10)

We can see that the Viterbi score is not an accurate estimation of the acoustic likeli-
hood, since that would be equal to the sum of all the probabilities of the possible sequences
of transitions that the HMM could follow. Thus, we would get

p(O|λ) =
∑
Q

P (O,Q|λ) . (1.11)

This computation could again be done using dynamic programming, after replacing the
max by a summation in equations (1.9), (1.10), which is exactly what the so-called For-
ward algorithm does. However, this algorithm is not used in practice, since the final
recognition result is not substantially affected [4]. More details about Viterbi algorithm
will be presented in Section 1.4.

Every HMM state can be viewed as corresponding to a phoneme, or, more generally,
to a Subword Unit (SU), such as a phonelike unit (PLU), a syllable, or a semi-syllable.
PLUs are based on phonemes, but are not identical to them, because they are modeled
based on the acoustic similarity instead of the linguistic one [6]. For problems with a
relatively small vocabulary, we could use as elementary units even the words themselves,
but for continuous speech with large vocabulary, this is not an option.

1.2 Acoustic Model 9

In practice, an SU is not represented by a singe HMM state, but by an elementary
HMM with a fixed number of states (5-10 states) [6]. For instance, we could model a
phoneme by a 5-state HMM, like the one illustrated in Figure 1.1iv. Self-loops are used in
the specific topology, so that any SU, and any state, can have arbitrarily long duration.

Because of coarticulation, the acoustic properties of each phoneme are affected by
the neighboring phonemes and are not the same in all acoustic environments. This phe-
nomenon is due to the continuous nature of human speech and the inevitable inertia of
articulators (vocal cords, tongue, lips, etc.) responsible for the speech production [7].
For that reason, it is common not to use phonemes (or PLUs) as the elementary units,
but SUs taking into account the preceding and succeeding phonemes (or PLUs), that is
context-dependent SUs, such as triphones and quinphones. For example, the phrase get up
consists of the phonemes /G/ /EH/ /T/ /AH/ /P/2, but of the triphones /(sil)G(EH)/
/(G)EH(T)/ /(EH)T(AH)/ /(T)AH(P)/ /(AH)P(sil)/.

Having chosen the fundamental subword unit to be used, and modeling each one by
an elementary HMM, each word can be represented by concatenations of such elemen-
tary HMMs, while a sentence can be represented by allowing transitions between HMMs
modelling different words. The knowledge of which HMMs have to be combined for the
generation of a word is given by the pronunciation lexicon, which is a mapping (not one-
to-one) between each word and its pronunciation (or pronunciations).

1.2.2 Gaussian Mixture Models

As has been already mentioned, the possible observations in each HMM state are vec-
tors in the space Rd. The most common way of modelling the probability of an observation
in a state is through (d-dimensional) Gaussian Mixture Models (GMMs) [8].

A GMM is nothing more than a linear superposition of gaussian distributions, such
that the probability that in state i we get the observation x is modeled as

bi(x) =

Mi∑
m=1

cimN (x|µim,Σim) , (1.12)

where Mi is the number of components in the mixture, which may vary between the states,
and the parameters cim satisfy the required conditions so that the combination in (1.12)
is convex:

cim ≥ 0 ∀m and

Mi∑
m=1

cim = 1 . (1.13)

It is noted that in practice any probability distribution can be estimated with an
arbitrarily good precision by a GMM, given a sufficiently large number of gaussians.

Usually, for the task of Automatic Speech Recognition, gaussians with diagonal co-
variance matrices are chosen. Although full matrices lead to more accurate modelling
and potentially better recognition results, they are related to two serious problems [2].
First, they require a much bigger amount of data for their trainin and second, the relevant
algorithms need much more running time. Under the assumption of diagonal covariance
matrix, every gaussian distribution is independent with respect to any dimension, so it is

2The CMU Pronouncing Dictionary http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

10 Chapter 1

computed as

N (x|µim,Σim) =

d∏
p=1

1√
2πσ2

imp

exp

{
−(xp − µimp)2

2σ2
imp

}
, (1.14)

where µimp and σ2
imp are the mean and variance, respectively, of the p-th dimension of the

m-th gaussian of the mixture corresponding to the i-th HMM state.

1.2.3 Training the Acoustic Model

Combining HMMs and GMMs yields an efficient and elegant statistical modeling for
the speech recognition task, which is, however, based on a series of parameters which
require a suitable training procedure for their estimation. In particular, we need to train
the parameters aij and πi, appearing in equations (1.5), (1.7), as well as the parameters
cim, µim, Σim, appearing in equations (1.12) - (1.14). After training the GMMs, we
directly get the set of probabilities B = {bj(k)}, since this is exactly what they model.
The algorithm which is used for the required training is Expectation - Maximization (EM).

Of course, we need some initial estimations and the simplest way to get them is using a
technique called flat start [2]. According to this approach, we set equal to 0 the transition
probabilities which we want by construction to be “inactive” in the HMM, something that
guarantees they will remain 0 after the training as well, as will become obvious later. All
the other transitions are initially considered to be equiprobable. For instance, for a 5-state
model, like the one in Figure 1.1iv, we get the initial transition matrix

A =


0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 1

 .
Obviously, for such a topology, we will also have

πi =

{
1 , i = 1
0 , i 6= 1

.

As far as the required GMM initializations are concerned, all the mean values and variances
are initialized with the corresponding sample mean values and variances, as estimated on
the training set.

In the HMM case, EM algorithm is known as forward-backward [6] and is based on
the forward probability, as mentioned in Subsection 1.2.1, and the backward probability.
The problem during HMM training is, given a sequence of observations O and a set of
the possible HMM states, to estimate the unkown parameters λ such that the probability
P (O|λ) is maximized.

Forward probability is defined as the probability that an HMM with parameters λ
generates at time t a sequence of observations o1o2 · · ·ot and is in state i:

αt(i) = P (o1o2 · · ·ot, qt = i|λ) (1.15)

=

 πibi(o1) , t = 1∑
i

{αt−1(i)aij} bj(ot) , t = 2, 3, · · · , T . (1.16)

1.2 Acoustic Model 11

As we have already seen, the last formula can be used for the precise estimation of the
acoustic likelihood p(O|λ) of an HMM, since

p(O|λ) =
∑
Q

P (O,Q|λ)

=
∑

q1,q2,··· ,qT

{
πq1bq1(o1)aq1q2bq2(o2) · · · aq(T−1)qT bqT (oT)

}
=
∑
i

αT (i) . (1.17)

Similarly, backward probability is defined as the probability that an HMM with pa-
rameters λ being in state i for time t generates a sequence of observations ot+1ot+2 · · ·oT :

βt(i) = P (ot+1ot+2 · · ·oT |qt = i, λ) (1.18)

=


1 , t = T∑
j

{aijbj(ot+1)βt+1(j)} , t = T − 1, T − 2, · · · , 1 . (1.19)

We, now, define as ξt(i, j) the probability that the HMM is in state i for time t and in
state j for time t+ 1, and as γt(i) the probability that the HMM is at state i for time t.
It can be proved [6] that

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)∑

i

∑
j

αt(i)aijbj(ot+1)βt+1(j)
, (1.20)

γt(i) =
∑
j

ξt(i, j) (1.21)

=
αt(i)βt(i)∑
i

αt(i)βt(i)
. (1.22)

Equations (1.20) and (1.21) consist the expectation step in the EM algorithm. Based
on those, maximization is the step where essentially the model parameters are estimated
according to the Maximum Likelihood (ML) criterion:

π̂i =expected number of times the HMM is in state i for time t = 1

= γ1(i) , (1.23)

âij =
expected number of transitions from state i to state j

expected number of transitions from state i

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

. (1.24)

12 Chapter 1

For completeness, but also to make easier the generalization in the continuous case, we
give the formula to compute the parameters bj(k) for discrete probability distributions:

b̂j(k) =
expected number of times at state j with observation vk

expected number of times at state j

=

T∑
t=1 s.t. ot=vk

γt(j)

T∑
t=1

γt(j)

. (1.25)

For GMMs, which are used in practice, we generalize formula so that it expresses the
probability that HMM is at state i for time t, with m-th gaussian giving the observation
ot:

γt(i,m) =
αt(i)βt(i)∑
i

αt(i)βt(i)
· cimN (x|µim,Σim)
Mi∑
m=1

cimN (x|µim,Σim)

. (1.26)

We note that equation (1.22) does not hold only for the case of discrete distributions, but
also in the continuous case, when, for example, we choose to model the probability by only
one gaussian.

The parameters are now updated according to the following formulas (maximization
steps):

ĉim =
expected number of times at state j with the m-th gaussian

expected number of times at state j

=

T∑
t=1

γt(i,m)

T∑
t=1

Mi∑
m=1

γt(i,m)

,
Ni,m

Mi∑
m=1

Ni,m

. (1.27)

Using the maximum likelihood criterion [8], we also get

µ̂im =
1

Ni,m

T∑
t=1

γt(i,m)ot =

T∑
t=1

γt(i,m)ot

T∑
t=1

γt(i,m)

, (1.28)

Σ̂im =
1

Ni,m

T∑
t=1

γt(i,m)(ot − µim)(ot − µim)T =

T∑
t=1

γt(i,m)(ot − µim)(ot − µim)T

T∑
t=1

γt(i,m)

.

(1.29)

1.2 Acoustic Model 13

EM algorithm is iterative with expectation and maximization steps coming one after
the other. It can be proved [8] that every time the parameters of the model are updated
from λold to λnew

P (O|λnew) ≥ P (O|λold) , (1.30)

so it is guaranteed that the algorithm will converge at some local (not necessarily global)
maximum, after enough iterations.

1.2.4 Tied States and Decision Trees

The use of triphones as SUs, despite the advantageous effects it has to the final per-
formance of the recognizer, is connected to a main “disadvantage”: there are too many
triphones. Assuming a language with 40 phonemes - a very realistic assumption - we have
403 = 64000 triphones. Thus, apart from the complexity they insert to the problem, there
is always the danger that some triphones are so rare that there are not enough represen-
tatives in the training set and the algorithm cannot accurately estimate the parameters
related to the corresponding HMMs. It is even possible that there are not representatives
at all in the training set, but they are encountered in the test set, that is in the word
sequences to be recognized.

In order to aleviate the aforementioned problem, speech recognition systems in practice
use the notion of parameter sharing between HMMs and HMM states [9]. A first idea is
the usage of a common set of a specific number of gaussian distributions, which are used
by all the states of all the HMMs and are combined with appropriate weights, so that
each state is modeled by a suitable GMM [10]. In theory, parameter sharing can happen
at any level. For instance, parameters may be shared between states of the same SU
(usually triphone) or different SUs. Additionally, the entire state (that is the GMM) may
be shared, or only the individual gaussians, or only specific parameters (e.g. the variances
are shared but the means are different). Here, we will present a technique which is found
in practice in modern systems, the tied-state HMMs, using decision trees [11].

A tied-state HMM aims at providing guarantees that there are enough training data
so that all the required parameters are accurately estimated, but, at the same time, all the
context-dependent differences between the phonemes are preserved. With this method, it
is possible even to estimate parameters for HMMs corresponding to triphones which have
never been encountered during training.

To describe the process, there is the initial assumption that all the triphones are
modeled by HMMs with the same number of states N . For each one of those states and
for every phoneme, a decision tree is constructed; thus, there will be totally N ·P decision
trees, where P is the number of phonemes in the language. All the triphones of the same
central phoneme share the same transition matrix A, so the decision trees are used to
cluster the probability distributions of the observations of HMM states.

Initially, all the states to be clustered by one decision tree (for example the second state
of the HMMs of all the triphones having x as their central phoneme) are put at the root of
the tree and are considered to be tied, that is they share the same parameters, while the
corresponding probability distribution is modelled by only one gaussian. Let S be the set of
those states and F the corresponding training frames. Then, we calculate the log likelihood
L(S) that F are produced from S and we choose the question which will split the root
into two nodes in a way that will lead to the maximum increase of the log likelihood. The
same process is repeated iteratively until the log likelihood reaches a minimum threshold,

14 Chapter 1

while not too many leaves have been generated, so that it is guaranteed that all the leaves
are related to a sufficient number of training samples. All the questions are of the form
“Is the left or right phoneme member of the set X?”. An example of such a decision tree
is given in Figure 1.2.

Is the left
phoneme nasal?

Is the right
phoneme liquid?

yes

Is the left
phoneme fricative?

no

Is the right
phoneme the /l/?

yes no yes no

yes no

Figure 1.2: Example of decision tree to cluster triphones. The input is the x-th state of the HMMs
of all the triphones with the same central phoneme. In this example, 5 clusters of triphones are
generated, where the states in each cluster are tied, that is they share the same parameters.

The last stage is to split the gaussian distributions. As mentioned, each state is initially
modeled by a single gaussian. After the construction of the decision trees, the parameters
of the probabililty distributions are iteratively retrained, splitting in every iteration one
or more gaussian distributions until we reach the desired number of gaussians from which
the GMMs will be composed.

The total number of states, that is the total number of all the leaves of all the decision
trees, is usually predefined and is usually in the range of a few thousand to a few tens of
thousands, with each state corresponding to a GMM of 16 to 64 gaussians. Those numbers
are empirical and depend on the volume of the available training data.

According to the technique described, triphone models are actually never trained or
stored. While, during decoding, a specific triphone model is needed, the corresponding
HMM is composed based on the appropriate decision trees. That way, the required models
for all the triphones can be composed, even for those which the system did not see during
training.

1.3 Language Model 15

1.2.5 Forced Alignment

The training of the acoustic model is based on the available recordings and the cor-
responding transcripts. However, in spoken language there are some elements which, in
general, are not available int the written text of transcripts. The main such elements are
the possible silences between the words and the different pronunciation that every speaker
uses to utter a specific word.

To aleviate those problems, and since the transcrpits are usually available at the word
level and not at the phoneme level (with the exception of a few databeses), a phonetic
alignment step is necessary. Even though this is by itself a field of research and different
approaches have been proposed [12], for the puproses of speech recognition the technique
of forced alignment, through the Viterbi algorithm, is commonly used.

First of all, we assume that there is a given dictionary which contains all the possible
pronunciations of the words and that silences optionally exist after every word, so that
pauses can be modeled between consecutive spoken words [2]. It is noted that usually
the silence phones are modeled by a more complex topology compared to the rest. For
example, in the Kaldi speech recognition toolkit3, silences are modeled by default by a 5-
state left-rigth HMM where transitions between various states are valid, as in Figure 1.1ii.
Additionally, the spectral properties of silence are not affected by neighboring phonems,
so context-free, monophone models are typically trained.

Based on those hypotheses, we construct, for each sentence, HMMs with parallel paths
for every possible pronunciation of a word and with all the additional silence phones, as
shown in the example of Figure 1.3. Viterbi algorithm can now be applied on those HMMs.
Since thei algorithm can find the most probable state sequence on the HMM it is applied
to, the pronunciation used, as well as the time boundaries between the words, can be
found from that sequence. The term “forced” alignment stems from the fact that Viterbi
algorithm is forced to find the optimal alignment under specific restrictions imposed by
the HMM structure.

W IY

sil

AA R

ER

sil

AO L

sil

T UH R IH S T S

T UH R AH S T S

sil

Figure 1.3: Simplified HMM modeling the phrase we are all tourists. There are two alternative
pronunciations for two words of the phrase, and pauses may occur between any two words. Every
ellipse here corresponds to a smaller constituent HMM.

1.3 Language Model

The performance of a speech recognizer is drastically improved when a reliable language
model is used. With that, ungrammatical and non probable sentences can be rejected,

3http://kaldi-asr.org

http://kaldi-asr.org

16 Chapter 1

leading to a significant reduction of errors [4].
The most widely used models for Large Vocabulary Continuous Speech Recognition

(LVCSR) are n-grams, which are going to be presented in detail. For applications where
we know in advance a finite, limited set of valid phrases, such as the spoken command
recognition [13], Finite State Grammars (FSGs), which are defined a priori by the designer
of the system, can be used. An example is shown in Figure 1.4.

increase

decrease

the#1

power

temperature of the#2 air conditioner

Figure 1.4: Example of a Finite State Grammar. the#1 and the#2 correspond to the same word
but different states.

1.3.1 Statistical Language Modelling with n-gram Models

By the term “n-gram” we refer to a subsequence of n similar elementss of a sequence.
We usually refer to n-grams of words, but, depending on the application, we may have
n-grams of characters, of phonemes, etc. One of the first times where the term n-gram
was used is in Shannon’s work on Information Theory [14], who supported that a synthetic
text which is constructed based on n-gram modeling becomes more intelligible as the order
n of the model is increased.

Denoting a sequence of M words as W = w1, w2, · · · , wM , wM1 , we know that

P (W) = P (w1)P (w2|w1) · · ·P
(
wM |wM−1

1

)
= P (w1)

M∏
m=2

P
(
wm|wm−1

1

)
. (1.31)

According to an n-gram model, instead of computing the probability of a word given its
entire history, this history is approximated only by the n previous words:

P (W) ≈
M∏
m=1

P
(
wm|wm−1

m−n+1

)
=

M∏
m=1

P (wm|wm−n+1, wm−n+2, · · · , wm−1) . (1.32)

This model is equivalent to a Markov model of order n− 1, since every state depends only
on the history up to n− 1 “time levels” back.

In the notation used in (1.32), in order for negative indices to make sense, that is in
order to model the cntext of the first words, special characters (<s>) need to be inserted
at the beginning of each sentence of the corpus used. For instance, if m = 1, n = 2
(bigram model), we would get P (w1|w0) = P (w1|<s>). Furthermore, special charachters
are inserted at the end of each sentence as well (<\s>). For example, if the available
corpus contained the sentence I play, to train a bigram model, we should estimate the
probabilities P (I—<s>), P (play—I) and P (<\s>—play).

An n-gram model is trained on the available text data, which is called training cor-
pus. For Automatic Speech Recognition, this corpus is composed by the transcriptions
of the speech data. The required probabilities can be simply estimated using Maximum

1.3 Language Model 17

Likelihood Estimation (MLE):

P
(
wm|wm−1

m−n+1

)
=
C
(
wnm−n+1

)
C
(
wn−1
m−n+1

) , (1.33)

where C(s) is the number of times that the sequence s is encountered in the corpus.
As the order of the model gets bigger, the results are expected to become better and

better. However, a very “powerful” language model can be very biased on the the training
set without having good generalization performance. The most common models are 3-
grams, with the big, modern systems using up to 5-grams.

The intuitive improvement of a recognition system as the order of the model gets bigger
can be formally expressed through the notion of perplexity [2]. The perplexity (PP) of a
sequence W with M words is defined as

PP (W) = P (W)−M = M

√
1

P (w1, w2, · · · , wM)
. (1.34)

Combining equations (1.34) and (1.32), we have that, using an n-gram model, the per-
plexity is

PP (W) = M

√√√√ M∏
m=1

1

P
(
wm|wm−1

m−n+1

) . (1.35)

As we can see, minimizing the perplexity is equivalent to maximizing the probability of
sequence W , according to the model used.

Here, it is worth noting a practical issue related to n-gram models and has to do with
the relationship between closed and open vocabulary. In the second case, it is possible that
the training set contains words which do not exist in the vocabulary used (for example,
there are not corresponding entries in the pronunciation dictionary, so we do not know
how to map them into a phoneme sequence). Then, a text normalization step needs to
precede the modeling, where all those words, known as OOV (Out-Of-Vocabulary) words,
are substituted by a common, predefined “word”, which is usualy the symbol <UNK>. For
the purposes of n-gram modeling, this “word” is treated like any other word of the training
corpus.

1.3.2 Smoothing Using the Witten-Bell Method

One obvious problem when using MLE according to equation (1.33) is that some n-
grams may appear very rarely or not at all in the training corpus, without that necessarily
meaining that those n-grams cannot be encountered during testing. Therefore, we should
not give them a zero (or almost zero) probability. The process during which a probability
mass is subtracted by the very frequent sequences (discounting) and is shared between
sequences with zero or very few occurencies (backoff) is called smoothing. In this Sub-
section, we will describe one of the various methods proposed for discounting, known as
Witten-Bell method [15, 16].

The definition of the new probability of a specific n-gram is recursive:

P ∗
(
wm|wm−1

m−n+1

)
= λwm−1

m−n+1
P
(
wm|wm−1

m−n+1

)
+
(

1− λwm−1
m−n+1

)
P ∗
(
wm|wm−1

m−n+2

)
, (1.36)

18 Chapter 1

where the probability P
(
wm|wm−1

m−n+1

)
is computed according to (1.33). To estimate the

parameters λwm−1
m−n+1

we define the auxiliary function N1+

(
wm−1
m−n+1•

)
as the number of

different n-grams which appear in the training set and start by the (n− 1)-gram wm−1
m−n+1:

N1+

(
wm−1
m−n+1•

)
=
∣∣{wm : C

(
wm−1
m−n+1wm

)
> 0
}∣∣ , (1.37)

where | · | denotes the cardinality of a set. We, now, want to satisfy

1− λwm−1
m−n+1

=
N1+

(
wm−1
m−n+1•

)
N1+

(
wm−1
m−n+1•

)
+
∑

wm
C
(
wmm−n+1

) . (1.38)

Using the equations (1.36), (1.33), and (1.38), we get the final equation for computing
the occurence probabilities of n-grams, according to the Witten-Bell method:

P ∗
(
wm|wm−1

m−n+1

)
=
C
(
wmm−n+1

)
+N1+

(
wm−1
m−n+1•

)
P ∗
(
wm|wm−1

m−n+2

)∑
wm

C
(
wmm−n+1

)
+N1+

(
wm−1
m−n+1•

) . (1.39)

1.4 Search and Decoding

As already mentioned, what we want in Automatic Speech Recognition, according to
the framework we have introduced, is to find the most probable word sequence Ŵ given
the observation sequence O, as shown in (1.3), where an observation is a feature vector
extracted by the signal.

In practice, during the process described, the acoustic likelihood is underestimated,
since during the construction of the acoustic model, where a GMM simply estimates the
occurence probability of an observation given a state, the context is not taken into account
[2]. Additionally, there is a significant difference between the dynamic ranges resulting
from the acoustic and the language model. For that reason, an extra parameter, known as
Language Model Scaling Factor (LMSF), which reduces the effect of the language model,
is introduced:

Ŵ = argmax
W∈W

p(O|W)P (W)LMSF . (1.40)

Of course, since the probabilities take real values less than one, to get the desired result,
we need LMSF > 1.

For reasons related to numerical stability computational complexity, we are usually
working in the logarithmic field4. So

Ŵ = argmax
W∈W

{log p(O|W) + LMSF · logP (W)} . (1.41)

Under this viewpoint LMSF is just a weighting factor of the language model, when the
corresponding weighting factor of the acoustic model is fixed and equal to one [17].

The language model, however, provides a way of modeling the transition probability
between consecutive words and thus inserts a penalty whenever new words are inserted.
So, reducing the effect of the language model, we are actually decreasing the insertion
probabilities or, equivalently, we increase the word insertion penalty. In other words, the
recognizer shows a preference towards a few big words rather than many smaller ones

4Unless stated otherwise, we are going to use the natural logarithm (base-e).

1.4 Search and Decoding 19

[2]. To balance this negative effect of LMSF, a separate Word Insertion Penalty (WIP) is
introduced:

Ŵ = argmax
W∈W

p(O|W)P (W)LMSFWIPN(W) (1.42)

= argmax
W∈W

{log p(O|W) + LMSF · logP (W) +N(W) · logWIP} , (1.43)

where N(W) is the number of words in the sequence W .
Finding the most probable word Ŵ is the job of the decoder. To make the entire

process more easily understandable, let’s consider a simple example. Let the working
vocabulary be very limited and contain only the words yes and no. Speech is continuous
and an unlimited number of those two words can be uttered consecutively. According to
the pronunciation dictionary, every word has a unique phonetic representation:

yes→ Y EH S

no→ N OW

Let every phoneme be modelled by a three-state HMM with the topology shown in Figure
1.1iv. Furthermore, let a bigram model which gives the transition probabilities between
consecutive words. According to what has been presented up to that point, a graph is
constructed, which is called search network and takes the form of Figure 1.5, where, for
simplicity, the states modeling the potential silence between words have been omitted.

<s>

Y1P(yes|<s>)

N1
P(no|<s>)

Y2 Y3 EH1 EH2 EH3 S1 S2

S3P(yes|yes)

P(no|yes) <\s>

P(<\s>|yes)

N2 N3 OW1 OW2

OW3

P(yes|no)

P(no|no)

P(<\s>|no)

<s>

Y1P(yes|<s>)

N1
P(no|<s>)

Y2 Y3 EH1 EH2 EH3 S1 S2

S3P(yes|yes)

P(no|yes) <\s>

P(<\s>|yes)

N2 N3 OW1 OW2

OW3

P(yes|no)

P(no|no)

P(<\s>|no)

Figure 1.5: Example of a search network for decoding. The vocabulary contains only the words
yes and no, evry phoneme is modeled by a 3-state HMM and a bigram model is used. For better
visuzlization, the network is split into two parts.

Inside this search network, the decoder has to find the path which, given the observation
sequence, is the most probable. To achieve that, decoders are based on the dynamic Viterbi
algorithm. Assuming the entire search network as a single HMM with parameters λ and
a set Q of N states, Viterbi algorithm Viterbi looks for the optimal state sequence Q∗

which will give the Viterbi score of equation (1.8) and works as follows [6]:

20 Chapter 1

� Initialization

δ1(i) = πibi(o1) , 1 ≤ i ≤ N
ψ1(i) = 0 , 1 ≤ i ≤ N

� Recursion

δt(j) = max
1≤i≤N

{δt−1(i)aij} bj(ot) , 2 ≤ t ≤ T , 1 ≤ j ≤ N

ψt(j) = argmax
1≤i≤N

{δt−1(i)aij} , 2 ≤ t ≤ T , 1 ≤ j ≤ N

� Termination

PV = max
1≤i≤N

{δT (i)}

q∗T = argmax
1≤i≤N

{δT (i)}

� Backtracking

q∗t = ψt+1

(
q∗t+1

)
, t = T − 1, T − 2, · · · , 1

By T we denote the last frame of the last word of the sequence to be decoded.
The algorithm is based on the recursive function δ which is defined as

δt(i) = max
q1,q2,··· ,qt−1

P (q1, q2, · · · , qt−1, qt = i,o1o2 · · ·ot|λ) (1.44)

and on keeping back pointers through the function ψ in order for the final backtracking
to be possible. According to the principles of dynamic programming, if the optimal move
is taken at every step, then the final path will be the optimal one. It is noted that, as
usually, the calculations are done in the logarithmic field, where, equivalently, we use the
function

δ̃t(j) = log δt(j) = max
1≤i≤N

{
δ̃t−1(i) + ãij

}
+ b̃j(ot) . (1.45)

Viterbi algorithm - which is not guaranteed to give the optimal decoding result - has
computational complexity O(N2T), which makes it much faster than the exponential time
required to examine all the possible word sequences in order to choose the most suitable
according to the available observations. However, as shown even by the toy example in
Figure 1.5, the number of states N can be very large in practical applications. Thus,
in order to further reduce the computational complexity, we often use a variation of the
Viterbi algorithm that utilizes the idea of beam searching, which is why it is called Viterbi
Beam Search (or also Time Synchronous Viterbi Beam Search) [4].

According to that method, the Viterbi score, say L(t), of the state sequence which
would be the optimal one if decoding terminated at time step t is computed for every t.
This value is used to prune all the paths with score less than θ ·L(t), where θ is a constant
between 0 and 1 called beam width. Since we are working in the logarighmic field, the
threshold for pruning is (logL(t)− η), where η = − log θ. Alternatively, we can define in
advance a fixed number K with the best (most probable) states to be kept at every step,
or even combine those two approaches. In any case, it is necessary to store at every time

1.5 Recognition Evaluation 21

step the ative states, that is the states which have not been pruned yet, in queues. The
beam width is a tradeoff decision between the desired accuracy of the recognition and the
small decoding time. As the beam gets narrower, the decoding becomes faster, but, at
the same time, the errors due to pruning are more probable, so the recognition accuracy
is decreased.

Often, we don’t just need the optimal sequence, but a set of say N optimal sequences
(N -best search) [4]. For instance, during a multi-pass decoding, after a set of hypotheses
has been constructed, the final result is found after rescoring. So, during the first decoding
pass we may use a simple language model (e.g. bigram or trigram) and subsequently
rescore the network based on a more complex model. Furthermore, during rescoring,
different combinations for the values of LMSF andWIP may be used, which have probably
not been taken into account during the first pass.

The representation of those hypotheses is done by a word lattice, which is in fact a
directed acyclic graph, where each edge corresponds to a probable word, together with
its score, and every node corresponds to the word boudaries and contains the relevant
time information for forced alignment. This lattice can be easily constructed through a
variation of the Viterbi algorithm. At every time step we need to keep a set of back
pointers from active states. That way, at the last step of the algorithm, multiple probable
sequences can be generated through backtracking. Each one of those sequences is a path
in the word lattice.

1.5 Recognition Evaluation

A speech recognition system is trained on a specific training set and evaluated on
a test set, while there is probably an additional validation set for the optimization of
certain parameters. The most widely used metric for the avaluation of Automatic Speech
Recognition is known as Word Error Rate (WER) and is given by the formula (1.46).

WER =
wi ·#insertions + ws ·#substitutions + wd ·#deletions

total number of words in transcripts
(1.46)

Setting all the weights in (1.46) equal to 1, which is the most common approach, we get

WER =
#insertions + #substitutions + #deletions

total number of words in transcripts
. (1.47)

The total number of insertions, substitutions, and deletions is such that the Levenshtein
distance between the constructed text and the given transcripts is minimized [2].

Alternatively, we can use the equivalent metric of Word Accuracy (WACC) [4], defined
as

WACC = 100%−WER . (1.48)

Of course, for a successful recognition, we need as high WACC or as low WER as possible.

22 Chapter 1

Chapter 2

Weighted Finite-State Transducers

2.1 Main Definitions

The Weighted Finite-State Transducers (WFSTs) are the more general case of Finite-
State Automata or simply Finite Automata (FA). In its simplest form, a FA is a Finite-
State Acceptor (FSA), which is formally defined as a 5-tuple (Q,Σ, δ, q0, F) [18], where

� Q is a finite set of states,

� Σ is a finite set of symbols, called the alphabet,

� δ : Q× Σ→ Q is the transition function which, based on the current state and the
current symbol, determines the next state,

� q0 ∈ Q is the initial state, and

� F ⊆ Q is a set of final states, or accept states.

In place of the function δ, we can instead define a multi-set of valid transitions E ⊆
Q×Σ×Q and similarly, the initial state can be generalized to a set I ⊆ Q of initial states.
Moreover, the above definition does not use the empty symbol ε, which means that any
transition requires a spesific symbol from the alphabet. Additionally, since δ is presented
as a function from (Q×Σ) to Q, it is assumed that we refer to a Deterministic FA (DFA).
If more than one transitions from the same state and with the same symbol are valid,
then we refer to Non-deterministic FA (NFA). However, in the case of FSAs, it can be
proved that for any NFA there is an equivalent DFA, but also that for any ε-NFA (where
transitions without any symbol from the alphabet) there is an equivalent NFA [18].

Job of an FSA, as its name suggests, is to accept or reject an input string which
is comprised of symbols belonging in the alphabet Σ. The set of strings that the FSA
accepts, that is the set of strings for which there are allowed transitions that lead from an
initial state to a final state, consist the language that the FSA recognizes. Any language
that can be represented by an FSA is called a regular language.

On the other hand, the job of a Finite-State Transducer (FST) is to transform a
representation into another one, by taking as input a string and producing, instead of
a binary acceptance/rejection output, a new string [2]. Any such relation that can be
represented by an FST is called a rational relation. It is noted that an acceptor can be
viewed as a special case of a transducer where the output string is identical to the input

23

24 Chapter 2

string. If we further introduce the notion of the weights, that is if each transition form
a state to another is connected to some weight, which can be related to the transition
probability or some cost that the particular transition incurs, then we get the WFSTs
(and similarly the Weighted Finite-State Acceptors (WFSAs)). Any relation that can be
represented by a WFST is called rational power series.

Before we give the formal definition of a WFSA or WFST, we should define the abstract
algebraic structures of monoid and semiring [19].

A monoid, denoted as <M, ◦, 1̄ >, consists of a set M, an associative binary operation
◦ on M and an identity element 1̄ such that 1̄ ◦ a = a ◦ 1̄ = a ∀a ∈M. If also it holds that
a ◦ b = b ◦ a ∀a ∈M,∀b ∈M then the monoid is called commutative.

A semiring, denoted as < A,⊕,⊗, 0̄, 1̄ >, consists of a set A with two binary operations
⊕ and ⊗ and two constants 0̄ and 1̄, such that the following axioms are satisfied:

(i) the < A,⊕, 0̄ > is a commutative monoid,

(ii) the < A,⊗, 1̄ > is a monoid,

(iii) the distributive property holds:
a⊗ (b⊕c) = (a⊗b)⊕ (a⊗c) and (a⊕b)⊗c = (a⊗c)⊕ (b⊗c) ∀a ∈ A,∀b ∈ A,∀c ∈ A,

(iv) 0̄⊗ a = a⊗ 0̄ = 0̄ ∀a ∈ A

A WFSA on a set W of a semiring is defined as the 7-tuple (Q,Σ, I, F,E, λ, ρ) [20, 4],
where

� Q is a finite set of states,

� Σ is a finite set of symbols, called the alphabet,

� I ⊆ Q is a set of initial states,

� F ⊆ Q is a set of final states,

� E ⊆ Q× (Σ ∪ {ε})×W×Q is a finite multi-set of valid transitions,

� λ : I →W is a function giving a weight to each initial state, and

� ρ : F →W is a function giving a weight to each final state.

A path π is a sequence of finite (say n) successive transitions t0, t1, · · · , tn, where
ti = (p(ti), l(ti), w(ti), n(ti)) ∈ E , i = 1, 2, · · · , n and p(ti+1) = n(ti). If p(t0) ∈ I and
n(tn) ∈ F , then we say that the WFSA accepts the string l(t0), l(t1), · · · , l(tn) with a cost

w(π) = λ(p(t0))⊗ w(t0)⊗ w(t1)⊗ · · · ⊗ w(tn)⊗ ρ(n(tn)) . (2.1)

Therefore, a WFSA can be viewed as a mapping between strings and weights. It is noted
that HMMs can be viewed as a special case of WFSAs [20].

Similarly, a WFST on the set W of a semiring is defined in the more general case as
the 8-tuple (Q,Σ,∆, I, F,E, λ, ρ) [20, 4], where

� Q is a finite set of states,

� Σ is a finite set of labels, called the input alphabet,

2.1 Main Definitions 25

� ∆ s a finite set of labels, called the output alphabet,

� I ⊆ Q is a set of initial states,

� F ⊆ Q is a set of final states,

� E ⊆ Q× (Σ ∪ {ε})× (∆ ∪ {ε})×W×Q is a finite multi-set of valid transitions,

� λ : I →W is a function giving a weight to each initial state1, and

� ρ : F →W is a function giving a weight to each final state.

FA are represented as directed graphs, where each state is denoted by a circular node,
while the final states are denoted by double border circular nodes. Each node is labeled
with a unique number. The edges of the graph represent the transitions between states.
In WFSTs each edge is labeled as li(t) : lo(t)/w(t), where li(t) is the input label, lo(t) is
the output label and w(t) is the weight. In case w(t) does not appear, it is assumed to
be equal to 1̄, while when all the edges are labeled as l(t)/w(t), we have a WFSA. The
initial and final nodes are also labeled with their weights (if it is not equal to 1̄). Various
FA examples are shown in Figure 2.1.

0

1

a

3
z

4

ε

2
b

c

k

(i) FSA

0

1
a:α

3
z:ζ

4

ε:ε

2
b:β

c:γ

k:κ

(ii) FST

0

1
a/0.1

3/0.9
z/0.4

4

ε/1.9

2
b/1.4

c/0.5

k/0.2

(iii) WFSA

0

1
a:α/0.1

3/0.9
z:ζ/0.4

4

ε:ε/1.9

2
b:β/1.4

c:γ/0.5

k:κ/0.2

(iv) WFST

Figure 2.1: Various Finite Automata examples. (i), (ii) and (iii) can be viewed as special cases of
a WFST.

Often, for the task of speech recognition, weights play the role of probabilities; therefore
the suitable semiring would be the probability semiring < [0, 1],+, ·, 0, 1 >. For numerical
stability reasons, logarithmic comutations are commonly used, so the costs are the negative
logarithms of the probabilities. Since the goal is to find the most probable word sequence
(using the Viterbi algorithm), the most suitable semiring for speech recognition is the
tropical semiring < R+ ∪ {∞},min,+,∞, 0 >. Sometimes, the log semiring < R+ ∪
{∞},⊕log,+,∞, 0 > is also used, where x⊕log y = − log(e−x + e−y).

1Without loss of generality, the Weighted FA (WFA) can be limited so that only an initial weighted
state 1̄ is allowed. This is a convention followed in practice by systems that implement WFA for simplicity
[21, 22].

26 Chapter 2

2.2 Basic Operations

The true strength of WFSTs comes form the existence of various unary and binary
operations which enable their efficient manipulation and transformation. This section is
an overview of the most basic operations.

2.2.1 Rational Operations

According to Theory of Computation, three regular operations are defines on lan-
gauges; union, concatenation, andKleene closure (or Kleene star) [18]: If L1 and L2 are
regular languages, then

� the union of L1, L2 is L1 ∪ L2 = {x : x ∈ L1 or x ∈ L2},

� the concatenation of L1, L2 is L1 · L2 = {xy : x ∈ L1 and y ∈ L2},

� the Kleene closure of L1 is L∗1 = {x1x2 · · ·xk : k ≥ 0 and xi ∈ L1∀i}.

Since every regular language can be represented by the FSA that accepts it, those opera-
tions can be defined in the FSA framework, as well.

Similarly, the following three rational operations are defined for WFSTs [23], where by
T (x, y) we denote the total weight for the transformation of string x to string y through
the transducer T :

� the union (or sum) of two WFSTs T1 and T2

(T1 ∪ T2) (x, y) = (T1 ⊕ T2) (x, y) = T1(x, y)⊕ T2(x, y) ,∀(x, y) ∈ Σ∗ ×∆∗ , (2.2)

� the concatenation (or product) of two WFSTs T1 and T2

(T1 · T2) (x, y) = (T1 ⊗ T2) (x, y) =
⊕

x=x1x2
y=y1y2

T1(x1, y1)⊗T2(x2, y2) ,∀(x, y) ∈ Σ∗×∆∗ ,

(2.3)
where the summation is over all the possible ways of splitting string x into x1 and
x2 and similarly for string y,

� the Kleene closure (or just closure) of a WFST

T ∗(x, y) =
+∞⊕
n=0

Tn(x, y) , ∀(x, y) ∈ Σ∗ ×∆∗ , (2.4)

where

Tn(x, y) =

 (

n times︷ ︸︸ ︷
T ⊗ · · · ⊗ T)(x, y) , n > 0{

1̄ , (x, y) = (ε, ε)
0̄ , otherwise

, n = 0

. (2.5)

An overview of the defined rational operations is given in Figure 2.2.

2From now on, the tropical semiring is the one to be used, unless it is stated otherwise.

2.2 Basic Operations 27

0 1
a:a/1

2
b:ε/2

3
c:ε/3

4/0.5
d:d/4

(i) WFST T1

0 1
a:d/1

2
ε:e/2

3/1
d:a/3

(ii) WFST T2

0

1a:a/1

5

ε:ε

2
b:ε/2 3c:ε/3 4/0.5d:d/4

6
a:d/1

7
ε:e/2

8/1
d:a/3

(iii) Union T1 ∪ T2

0 1
a:a/1

2
b:ε/2

3
c:ε/3

4
d:d/4

5
ε:ε/0.5

6
a:d/1

7
ε:e/2

8/1
d:a/3

(iv) Concatenation T1 · T2

5 0
ε:ε

1a:a/1 2b:ε/2
3

c:ε/3

4/0.5

d:d/4

ε:ε/0.5

(v) Kleene closure T ∗1

Figure 2.2: Rational operations defined WFSTs, assuming tropical semiring2.

2.2.2 Projection, Inversion, and Composition

Some other important operations defined on a WFST projection, inversion, and com-
position [4]. Projection is the procedure during which a transducer is mapped to an
acceptor, the transitions of which are labeled with either the input labels (upper or first
projection), or the output labels (lower or second projection) of the corresponding trans-
ducer’s transitions [2]. Formally, the first and second projections are respectively defined
as [23]

↓ T (x) =
⊕
y

T (x, y), (2.6)

T (x) ↓ =
⊕
x

T (x, y) . (2.7)

Inversion simply inverts the input and output labels of a transducer:

T−1(x, y) = T (y, x) . (2.8)

During composition, given two WFSTs, say T1 = (Q1,Σ1,∆1, I1, F1, E1, λ1, ρ1) and
T2 = (Q2,∆1,∆2, I2, F2, E2, λ2, ρ2), a new WFST T = (Q,Σ1,∆2, I, F,E, λ, ρ) = T1 ◦T2 is

28 Chapter 2

produced, where, if string x is transformed into z by the transducer T1 and z is transformed
into y by the transducer T2, then T transforms x into y [2]. Formally,

T1 ◦ T2(x, y) =
⊕
z∈∆∗1

T1(x, z)⊗ T2(z, y) . (2.9)

It is noted that in case of acceptors, composition is reduced into intersection.
For the algorithmic computation of composition [4], every state q ∈ Q in T can be

viewd as a pair q = (q1, q2),∈ Q1 ×Q2. If in T1 there exists the transitiuon t1 from q1 to
q′1 with the label li(t1) : l0(t1)/w(t1) and in T2 there exists the transition t2 from q2 to q′2
with the label li(t2) : l0(t2)/q(t2), then in T there exists the transition t from (q1, q2) to
(q′1, q

′
2) with the label li(t1) : lo(t2)/(w(t1)⊗ w(t2)). Additionally, any initial state (i1, i2)

has weight λ(i1)⊗ λ(i2) and, similarly, any final state (f1, f2) has weight ρ(f1)⊗ ρ(f2).
For this analysis, however, it was assumed that no state in T1 has ε-output and no

state in T2 has ε-input. In the more general case, a first step is required where T1 and
T2 are transformed into T ′1 and T ′2, respectively, and the described algorithm computes
T ′1 ◦T ′2. During this first step, T ′1 is computed by T1 replacing ε in the ε-outputs by a new
symbol, say ε o, while T ′2 is computed by T2 replacing ε in the ε-inputs by a new symbol,
say ε i. Moreover, self-loops with labels ε : ε i are introduced in all the states of T ′1 and
self-loops with labels ε o : ε are introduced in all the states of T ′2 [4].

An overview of the defined basic operations is given in Figure 2.3.

0 1
a/1

2
b/2

3
c/3

4/0.5
d/4

(i) First Projection ↓ T1

0 1
a:a/1

2
ε:b/2

3
ε:c/3

4/0.5
d:d/4

(ii) Inversion T−11

0 1
a:d/2

2
b:ε/2

3
c:ε/3

4
ε:e/2

5/1.5
d:a/7

(iii) Composition T1 ◦ T2

Figure 2.3: Projection, inversion, and composition on WFSTs. T1 and T2 are defined in Figure
2.2.

2.3 Optimization Operations

The optimization operations that can be applied to a WFST aim at changing their
structure in a way that their manipulation is more efficient in terms of time as well as of
memory. Obviously, the output of this tranformation has to be an equivalent WFST. Two
WFSTs are called equivalent if they tranform the same input string to the same output
string with the same total weight [20].

2.3 Optimization Operations 29

Maybe the most importat optimization operation on a WFST is its transformation to
a deterministic one (determinization). A transducer is called deterministic or sequential if
from each state there is one and only one transition given an input label and in addition
no state has an ε-input [20]. Contrary to the classic theory of FA that deals with automata
without weights, according to which for each NFA there is an equivalent DFA, this does
not hold for automata with weights. However, almost all the WFSTs used for speech
recognition can be transformed into deterministic, either directly or after some auxiliary
transformations. For example, every acyclic automaton with weights has a deterministic
equivalent [20].

The algorithm to find the deterministic equivalent of a WFST assumes that the semir-
ing being used is weakly left-divisible, which means that for every x and y in the set A of
the semiring, such as x⊕ y 6= 0̄, there is at least one z ∈ A such that x = (x⊕ y)⊗ z [4].
Tropical semiring is weakly left-divisible.

If the determinization is applied to an ε-NFA, vieweing ε as a usual symbol from the
alphabet, then the produced FA will continue to have ε-transitions, which means it will
not be deterministic. The operation during which the ε-transitions are removed from an
automaton is called ε-removal [4]. It is an important operation, since the existence of εs
intorduces time bottlenecks in lots of applications. The produced WFST does not contain
new states, but is does contain new transitions, which, however, do not alter the relation
that the initial WFST represents. The transitions removed from an FST with ε-removal
are only the ones labeled as ε : ε, which means that after this operation, it is possible that
there still exist εs in input or output.

To remove as many εs as possible, another operation, called synchronization, takes
place as a previous step. During synchronization, given a WFST T , an equivalent WFST
T ′ is computed, which is synchronized [23]. A WFST is called synchronized if the delay
of every seccessful path is 0 or changes striclty monotonically. The delay d(π) of a path
π is defined as the difference between the length of the output string and the length of
the input string of the path. The algorithm which is used for this operation only requires
that the WFST on which it is applied has vounded delays. A necessary and sufficient
codnition is that the delay of any circle of the WFST is equal to 0. Intuitively, during
synchronization, transitions of the formε : x and x : ε are reduced and transitions of the
form x : x, with no εs, and of the form ε : ε, which can be deleted during ε-removal, are
increased [4].

Synchronization leads to a more efficient distribution of εs in a WFST. On the other
hand, weight pushing leads to a more efficient distribution of the weights. Specifically,
during weight pushing the weights “are pushed” towards more initial states of the WFST.
That way, the search of shortest paths (meaning paths with minimum weight in a tropical
semiring) is substantially accelerated, since we can reject paths which seem to be associated
with big weights from early on [4].

The corresponding algorithm operates in two steps. First, a potential V (q) is computed
for each state q of a WFST T . Denoting as Π(q, F) the set of the paths from state q to a
final state q′ ∈ F , V (q) is defined as the shortest path from q to F :

V (q) =
⊕

π∈Π(q,F)

{w(π)⊗ ρ(n(π))} , (2.10)

where w(π) is the total weight of the path and n(π) is the final state of the path. After
that, denoting the beginning of a transition e as p(e) and the end as n(e), we re-calculate

30 Chapter 2

the weights as:

w(e) = V (p(e))−1 ⊗ w(e)⊗ V (p(e)), ∀e : V (p(e)) 6= 0̄ (2.11)

λ(q) = λ(q)⊗ V (q), ∀q ∈ I (2.12)

ρ(q) = V (q)−1 ⊗ ρ(q), ∀q ∈ F : V (q) 6= 0̄ (2.13)

The algorithm assumes that the semiring in use is weakly left-divisible, k-closed and
zero-sum free. A semiring on the set A is called k-closed if there exists k ≥ 0 such that⊕k+1

n=0 x
n =

⊕k
n=0 x

n for any x ∈ A, and is called zero-sum free if x⊕ y = 0̄⇒ x = y = 0̄
for any x, y ∈ A. Tropical semiring satisfies all three assumptions, (and it is 0-closed).

Finally, to avoid resundancies and for a better memory usage, another operation of
major importance is the minimization of an FA, that is the construction of an equivalent FA
with the minimum number of states. For the minimization of a WFST [23], it is enough to
first apply the weight pushing algorithm and then a common minimization algorithm, as it
would be applied to an FSA, vieweing the label li(e) : lo(e)/w(e) of a transition e as a single
input label, as if it were an FSA. It is noted that the common minimization algorithms
assume DFA and not NFA, so a first determinization of the WFST is is necessary.

During the minimization of a DFA all the unreachable states are removed and then
all the equivalent states are merged. Two states are called equivalnet if they are not k-
distinguishable for any k. The definition of k-distinguishability is recursive: Two states
are 0-distinguishable if one is final and the other is not, while they are called (i + 1)-
distinguishable if there is a symbol (label) with which they lead to i-distinguishable states.

Some examples of applying the optimization operations that were analyzed are shown
in Figure 2.4. We should note that the sequence of applying the optimization algorithms
on a WFST is of crucial importance. For example, in Figure 2.4vi a non-deterministic
WFST is produced, although the determinization of the WFST in Figure 2.4i has been
preceded. It is also observed that during the minimization of the WFST in Figure 2.4ii
into the WFST in Figure 2.4vii a weight pushing is also applied, as expected according to
the described algorithm.

2.4 WFSTs and Speech Recognition

WFSTs offer a unifying framework, both for the language and acoustic models, as well
as for other sources of information in a speech recognition system, such as the pronuncia-
tion lexicon. From this point of view, we finally have in our disposal a unique static WFST
which has been constructed by the composition of component WFSTs and which directly
creates a search network for the mapping of a sequence of acoustic features, or observa-
tions as had been defined in the HMM-framework, into a sequence of words. That way, the
decoding becomes faster and also various redundancies are removed through optimization
techniques, as described in Section 2.3.

Ignoring, for simplicity, the parameters LMFS and WIP, introduced in Section 1.4, the
probabilistc representation of a speech recognition model is given by the relation (1.3).
In fact, many times the lexicon does not contain only one mapping between words and
pronunciations, that is between sequences of letters and sequencies of phonemes, for the
construction of a word, but it also contains the information of how probable the occurence
of a phoneme sequence V is, given the word W [4]. Therefore, relation (1.3) is transformed

2.4 WFSTs and Speech Recognition 31

0

a:α/0.7

1
a:ε/1.2

a:α/2

2/1
b:β/0.5

(i)

0

1a:ε/0.7

3

b:ε/1.2

a:α/0.7

2/1
b:β/1

a:α/0.5

4
b:β/1.1

(ii)

0 1
a:ε/0.7

a:α/0.7

2/1
b:β/1

(iii)

0 1
a:ε/2.7

a:α/0.7

2
b:β

(iv)

0 1
ε:ε/2.7

a:α/0.7

2
a:β

3
b:ε

(v)

0

1a:α/3.4

2a:β/2.7

a:α/0.7

a:β

3
b:ε

(vi)

0

1a:ε/2.7

2

b:ε/2.3

a:α/0.7

3

b:β

b:β
a:α/0.5

(vii)

Figure 2.4: Optimization Operations on WFSTs. (i) Non-deterministic WFST. (ii) Non-minimum
WFST. (iii) Deterministic WFST, equivalent to (i). (iv) Equivalent WFST to (iii) after weight
pushing. (v) Equivalent WFST to (iv) after synchronization. (vi) Equivalent WFST to (v) after
ε-removal. (vii) Minimum WFST, equivalent to (ii).

into the relation

Ŵ = argmax
W∈W

 ∑
V ∈R(W)

p(O|V,W)P (V |W)P (W)

 (2.14)

≈ argmax
W∈W

 ∑
V ∈R(W)

p(O|V)P (V |W)P (W)

 , (2.15)

where W is the set of possible sequences of words and R(W) is the set of the possible
sequences of phonemes for the word W .

32 Chapter 2

As has been explained, Viterbi algorithm is used for decoding, which always underesti-
mates, but is computationally tractable and is based on the replacement of the summation
in the last equation by a max function. Therefore, we actually get the formula

Ŵ ≈ argmax
W∈W

{
max

V ∈R(W)
p(O|V)P (V |W)P (W)

}
(2.16)

and, using logarithms, the formula

Ŵ ≈ argmax
W∈W

{
max

V ∈R(W)
{log p(O|V) + logP (V |W) + logP (W)}

}
. (2.17)

In the language of WFSTs, we have the WFSTH which transforms a sequence of acous-
tic features O into a sequence of phonemes V with a weight wH(O → V) = − logP (O|V),
the WFST L which transforms a sequence of phonemes V into a sequence of words W
with a weight wL(V → W) = − logP (V |W) and WFSA G which accepts a sequence of
words W with a weight wG(W) = − logP (W). Those automata are composed into a final
WFST N :

N = H ◦ L ◦G . (2.18)

Thus, the problem of speech recognition is reduced to a problem of finding the shortest
path of the WFST given a sequence O:

Ŵ ≈ argmin
W∈W

{
min

V ∈R(W)
{(− log p(O|V)) + (− logP (V |W)) + (− logP (W))}

}
(2.19)

= argmin
W∈W

{
min

V ∈R(W)
{wH(O → V)⊗ wL(V →W)⊗ wG(W)}

}
(2.20)

= argmin
W∈W

wN (O →W) , (2.21)

according to the operations defines on the semiring.
When using triphone models, it is necessary to have one more WFST C, which trans-

forms a sequence of triphones into a sequence of phonemes, where each phoneme is context-
independent and is identical to the central phoneme of the corresponing triphone. After
this addition, the final WFST can be written as

N = H ◦ C ◦ L ◦G . (2.22)

2.4.1 Construction of the Components

The transducer H transforms a sequence of acoustic features (or observations) O into a
sequence of phonemes or in general into a sequence of SUs, no matter which SUs have been
chosen. Since usually the SUs used in practice are triphones, those are the ones we will
consider. H, therefore, can be viewed as the set of all the elementary HMMs that model
all the triphones, which are unified into a single WFST through the rational operations of
union and Kleene closure [20].

However, the possible observations in each HMM state are non-quantized vectors.
Thus, an HMM cannot be directly represented as FA, since the definition of the latter
requires a finite alphabet, both for the input labels and the output labels (in the case of
transducers). For that reason, the information carried by the set of HMMs can be split,

2.4 WFSTs and Speech Recognition 33

in a way that we get one WFST that carries the HMM toppology information and one
transducer, which is out of the strict scope of the WFST definition, which models the
acoustic matching probability. To better illustrate this procedure we will use an example
[4].

Let x be a meta-symbol representing any possible feature vector, which means any
possible observation in an HMM. Moreover, let all the triphones be modeled by left-right
3-state HMMs, where each state is denoted by Si, i = 1, 2, · · · . Every state Si comes
from a predefined, finite set of tied states, produced after the procedure described in
Subsection 1.2.4. The closure of the union of two such HMMs with totally 4 tied states is
illustrated in Figure 2.5i. Both the transition probabilities aij and the probabilities bSi(x)
of an observation x from a state Si are generated during training the acoustic model, as
described in Subsection 1.2.3. Using the tropical (or log) semiring, we get as transition
weights the negative log-probabilities such that w(x|Si) = − log bSi(x).

0

1x:(m)A(l)/w(x|S1)

4

x:(n)A(l)/w(x|S1)

x:ε/-log(a11)+w(x|S1)

2
x:ε/-log(a12)+w(x|S2)

x:ε/-log(a22)+w(x|S2)

3

x:ε/-log(a23)+w(x|S3)

ε:ε/-log(a30)

x:ε/-log(a33)+w(x|S3)

x:ε/-log(a44)+w(x|S1)

5
x:ε/-log(a45)+w(x|S4)

x:ε/-log(a55)+w(x|S4)
6x:ε/-log(a56)+w(x|S3)

ε:ε/-log(a60)
x:ε/-log(a66)+w(x|S3)

(i)

0

1S1 :(m)A(l)

4

S1 :(n)A(l)

S1 :ε/-log(a11)

2
S2 :ε/-log(a12)

S2 :ε/-log(a22)

3

S3 :ε/-log(a23)

ε:ε/-log(a30)

S3 :ε/-log(a33)

S1 :ε/-log(a44)

5
S4 :ε/-log(a45)

S4 :ε/-log(a55)
6S3 :ε/-log(a56)

ε:ε/-log(a60)
S3 :ε/-log(a66)

(ii)

0

x:S1/w(x|S1)

x:S2/w(x|S2)

x:S3/w(x|S3)

x:S4/w(x|S4)

(iii)

Figure 2.5: Splitting a transducer from acoustic observations to triphones into two component
transducers. (i) Tranducer that transforms a sequence of acoustic observations to a sequence of
triphones. It is the Kleene closure of the union of the HMMs that model the triphones (m)A(l)
and (n)A(l). (ii) WFST that transforms a sequence of HMM states into a sequence of triphones.
(iii) Transducer that transforms a sequence of acoustic features into a sequence of HMM staes.

The transducer in Figure 2.5i can be split into the WFST in Figure 2.5ii and the
transducer in Figure 2.5iii. The former is actually the automaton H which is used for
the construction of the WFST in equation (2.22) and converts a sequence of HMM states
into a sequence of triphones (or of any context-dependent SUs chosen). The latter, which

34 Chapter 2

transforms a sequence of acoustic observations into a sequence of HMM states, is directly
used during decoding. It is noted that in practice, in order for N to be more efficient in
terms of size, H does not contain self-loops. Those are simulated during decoding [20].

As far as the WFST C is regarded, which transforms a sequence of triphones (or
more generally context-dependent SUs) into a sequence of phonemes (or more generally
context-independent SUs), let’s consider a simple example with just two phonemes, A and
B. The WFST C ′ which transforms a sequence of phonemes into a sequence of triphones
is more easily digestible. C is just the inversion of C ′ [24, 20]. Thus, C ′ transforms,
for instance, the sequence A/B/A into the sequence (ε)A(B)/(A)B(A)/(B)A(ε). Taking
into consideration all the possible combinations, the corresponsing WFST is illustrated in
Figure 2.6. Since there is a big number of triphones which never occur, there is no reason
to use the entire network C. Instead, C can be generated in memory exactly when needed,
integrating into N only parts of it which are really required.

ε,* A,A
x:(ε)A(A)

A,BA:(ε)A(B)

B,A

B:(ε)B(A)

A,ε

A:(ε)A(ε)

B,ε

B:(ε)B(ε)

A:(A)A(A)

A:(A)A(B)

A:(A)A(ε)

B:(A)B(A)

B:(A)B(ε)

B,B
B:(A)B(B)

A:(B)A(A)

A:(B)A(B)

A:(B)A(ε)

B:(B)B(A)

B:(B)B(ε)

B:(B)B(B)

Figure 2.6: WFST which transforms a sequence of context-independent phonemes into a sequence
of triphones. It is considered that only the phonemes A and B exist.

The pronunciation lexicon L, to convert a sequence of phonemes into a sequence of
words, is constructed as follows. First, one FST for each instance of the lexicon in use is
generated. In the general case where the lexicon also contains the probabilistic information
for each pronunciation, that is how probable it is for a word to be pronounced in a specific
way, then WFSTs are generated. Then, the union of all those WFSTs and the Kleene
closure of the union is computed [20]. For example, considering the elementary lexicon of
page 19, the procedure followed to generate L is illustrated in Figure 2.7. We can directly
extend L in order to accomodate possible pauses between successive words, by adding a
transition from every final state to the initial state labeled as sil : ε.

Finally, the WFSA G, which accepts a sequence of words with some cost, is nothing
but the language model, as it has been described in Section 1.3. In case of an n-gram
model, which is the most common one, the representation by a WFSA is straightforward,
since it is in fact a Markov model of order n− 1 [4]. The representation of an FSG by an
FSA is straightforward as well, with the sole modification being the fact that the words
of the grammar should label the edges of the network instead of the states. For instance,

2.4 WFSTs and Speech Recognition 35

0 1Y:yes 2EH:ε 3S:ε

(i) Tyes

0 1N:no 2OW:ε

(ii) Tno

0

1Y:yes

4

ε:ε

2EH:ε

5
N:no

3S:ε

6
OW:ε

(iii) Tyes ∪ Tno

7 0ε:ε

1Y:yes

4

ε:ε

2EH:ε

5N:no

3

S:ε

ε:ε

6OW:ε

ε:ε

(iv) (Tyes ∪ Tno)∗

0

1N:no

2Y:yes

OW:ε

3

EH:ε

S:ε

(v) (Tyes ∪ Tno)∗opt

Figure 2.7: Generation of the WFST which models the pronunciation lexicon L. (i) FST for the
pronunciation of the word yes. (ii) FST for the pronunciation of the word no. (iii) Union of Tyes
and Tno. (iv) Kleene closure of the union of Tyes and Tno. (v) Equivalent WFST to (iv) after
ε-removal and minimization.

the FSG of Figure 1.4 can be represented by an FSA as illustrated in Figure 2.8.

0

1
increase

2decrease
3

the

the

4power

5
temperature

6

of

of 7the 8air

9

conditioner

ε

Figure 2.8: Example of FSG represented by an FSA. It is the FSG in Figure 1.4.

2.4.2 Composition and Optimization

Having constructed the required WFSTs H, C, L, and G, those can be composed
into a unified WFST N , according to the equation (2.22). However, in order to avoid
a huge N , gradual optimization operations, like the ones presented in Section 2.3, are
required. This need becomes apparent from the WFST illustrated in Figure 2.7v, which
is equivalent to that in Figure 2.7iv modeling an elementary pronunciation lexicon, but
after some optimization operations having taken place.

First of all, we should make sure that any intermediate step generates a deterministic
WFST [20]. Assuming that G is indeed deterministic3, we should guarantee the determin-
istic nature L ◦G. This property often does not hold because of the potential existence of
homophones. For that reason, the lexicon is extended so that at the end of each sequence

3Any εs in G are viewed as regular symbols from the alphabet. If G remains non-deterministic, its
determinization is required.

36 Chapter 2

of phonemes there is a special symbol (for instance, #1, #2, etc.). Even in the cases of
sequence of phonemes uniquely representing a word, it is a good practice to add a spe-
cial symbol at the end (for instance #1), in order to avoid errors in case of homophone
phrases which consist of non-homophone words [4]. For example, ice cream cannot be
distinguished from I scream (the) based on the pronunciation lexicon unless those special
symbols are added. Thus, in the first case we have the sequence of phonemes {AY #1 S K

R IY M #1}, while in the second one we get the sequence {AY S #1 K R IY M #1}. That
way, the modified WFST L̃ is generated, which is then composed with G and the result
of the composition can be transformed into a deterministic WFST, denoted as LG:

LG = det(L̃ ◦G) (2.23)

After this modification of L, though, paths with symbols not originally generated by C
are created. Therefore, C should be also transformed into C̃, adding self-loop transitions
in each state4, such that any auxiliary symbol can be added at any pronunciation of
any word [20]. If P is the maximum number of words that can be uttered with the
same pronunciation, then P self-loops should be added in each state with the labels #1 :
#1,#2 : #2, · · ·#P : #P . The produced WFST C̃ can now be composed with LG and
be determinized:

CLG = det(C̃ ◦ LG) (2.24)

Following a similar line of thought, P self-loops are added in the initial state of H,
where the initial state is considered to be in the boundary between any two SUs, as
depicted in Figure 2.5ii. Thus, the next step is the composition of H̃ which was just
generated with the CLG and yet another determinization:

HCLG = det(H̃ ◦ CLG) (2.25)

HCLG is then minimized and all the auxiliary symbols which have been added are
replaced by the empty symbol ε, with the corresponding operation denoted as πε, so that
we get the WFST

N = πε(min(HCLG)) = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))) . (2.26)

The first step of the minimization is, as already described, the weigth pushing. The
choice of the semiring to be used for the weight pushing turns out to play an important
role, with log semiring having substantial advantages versus the tropical one [20]. In both
cases, the result of the minimization in terms of the final number of states and transitions is
identical, but the weight distribution is different. It has been observed that the distribution
that results after weight pushing on the log semiring makes pruning during decoding with
Viterbi beam search more efficient.

The main difference as far as the weight pushing algorithm is concerned is related to
the potential V (q) corresponding to each state q of the WFST, according to the equation
(2.10). Specifically, when using tropical semiring we get the equation

V (q) = min
π∈Π(q,F)

{w(π) + ρ(n(π))} , (2.27)

4In practice, (det(C−1))−1 is what is used here instead of C [4], because C is not deterministic and also
a deterministic equivalent is not straightforward to find.

2.4 WFSTs and Speech Recognition 37

which can be computed with a classic shortest path algorithm. On the other hand, the
usage of log semiring leads to a potential

V (q) = − log
∑

π∈Π(q,F)

{
ew(π)+ρ(n(π))

}
, (2.28)

which is equal to the negative logarithm of the total probability of all the paths from state
q to some final state, since the corresponding weights are equal to the log-probabilities
of transitions. Using such a potential function guarantees that the produced WFST will
retain the usual normalization in HMMs, where the sum of all the “weights” of all the
outcoming transitions from any state is required to be equal to 1.

Finally, the above steps can be succeeded by a procedure known as factoring [20].
During factoring, any chained transition is replaced by a single transition, which is labelled
with the concatenation of all the labels of the component transitions in the chain, while
the weight assigned is equal to the product5 of the component weights. We define as
chain a path all the states of which, apart from the first and the last ones, have only one
incoming and one outcoming transition.

Since H̃ does not contain, as has already been mentioned, any self-loops, but those
are simulated during decoding, it is expected that the final WFST N , which transforms
a sequence of HMM states to a word sequence, contain multiple chains. Out of them,
however, not all the chains are replaced. Instead, only the replacements which are going
to reduce the size of the transducer take place. At any case, factoring does not affect the
decoding run time, but only the size of the final transducer.

The decision of whether a chained transition is going to be merged into a single tran-
sition can be based on a gain function. Let a sequence of HMM states σ = Sk, Sk+1, · · ·
and let C(N) the set of chained transitions in WFST . Then, denoting as li(π) and lo(π)
the input and output strings of a path π, respectively, the gain G(σ) of the sequence σ is
defined as

G(σ) =
∑

π∈C(N)
li(π)=σ

{|σ| − |lo(π)| − 1} , (2.29)

where |x| is the length of the string x. The replacement of the string σ during factoring
reduces the trancducer’s size only if G(σ) > 0.

Thus, during factoring, sequences of input labels that correspond to the HMM state
identities are replaced by a single string corresponding to the identity of an n-state HMM,
where n is the number of transitions in the chain to be replaced. A relevant example is
illustrated in Figure 2.9. Therefore, factoring results in splitting N as follows:

N = H ′ ◦ F , (2.30)

where, if we denote as fact(·) the factoring operation,

F = fact(N) = fact(πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G)))))) (2.31)

and H ′ is a transducer that maps sequencies of n HMM states into n-state HMMs. The
WFST which is actually used for the recognition task is F , since H ′ can be directrly
simulated during decoding. It is noted that alternatively, factoring can in practice precede
minimization [20].

5For a tropical semiring the “product” is equal to the algebraic operation of summation.

38 Chapter 2

10 11
S3:yes/0.9 12

S6:ε 13
S4:ε 14

S9:ε 15
S2:ε

(i)

10 11
S3S6S4S9S2:yes/0.9

(ii)

Figure 2.9: Example of factoring part of a WFST. (i) 5-transition chain. (ii) Replacement of the
chained transitions by a single transition. In this example, the corresponding part of the transducer
H ′ in formula (2.30) should map the sequence S3, S6, S4, S9, S2 to the string S3S6S4S9S2.

Chapter 3

Feature Sets for ASR

3.1 Mel Frequency Cepstrum Coefficients (MFCCs)

With no doubt, the most widely used feature sets used in practical applications are
MFCCs (Mel-Frequency Cepstrum Coefficients) [25]. In this Section, we will describe how
those features are extracted and we will present a few simple, common transformations
applied to them.

3.1.1 Extraction of MFCCs

The preprossecing steps consist of passing the signal through a pre-emphasis system
with transfer function

Hpreemph(z) = 1− ãz−1, ã ∈ (0.9, 1) (3.1)

and segmenting it in - usually overlapping - frames. In order to minimize the discontinuities
in the frame boundaries and the leakage efferct between neighboring frames, Hamming
windows (or of similar shape) are usually applied. A Hamming window if length L is
defined as

w(n) = 0.54− 0.46 cos

(
2πn

L− 1

)
. (3.2)

Pre-emphasis is necessary to amplify the high frequencies, where usually the spectrum
values of the speech signal are small and more easily affected by any noise. Windowing is
necessary for speech recognition, as well as in many other applications of speech processing,
because the statistical properties of the signal change over time, but can be considered to
be fixed over small time segments (of about 10− 30msec) [3], so that the common Fourier
analysis techniques can be applied. Because of the small duration of the windows used,
MFCCs belong to a broad class of feature sets called short-term.

MFCCs are based on the real cepstrum of the windowed signal, derived through the
Fourier transform of the signal. For their extraction, a non-linear frequency scale is used,
which approximates the behavior of human hearing and has been proved to have significant
advantages in the field of speech recognition. The entire idea is founded on the fact that
humans perceive sound changes in low frequencies more easily, compared to changes in
high frequencies.

The mel unit is defined in a way that pairs of sounds which have the same “distance”
according to the human perception, are separated by the same number of mels. The

39

40 Chapter 3

formal mapping between a frequency expressed in Hz and the corresponding frequency in
mel is not unique. A widely used formula is the following [26]:

m = B(f) = 2595 log10

(
1 +

f

700

)
, (3.3)

f = B−1(m) = 700
(

10
m/2595 − 1

)
(3.4)

An alternative formula, which first appeared in [27], defines that the mapping between
mels and Hz is linear until 1000Hz and continues as logarithmic:

m =


3f

200
, f < 1000Hz

1000 +
log f

1000

log 1.0711703
, f ≥ 1000Hz

(3.5)

Those two approaches are depicted in Figure 3.1.

f(Hz)

m
(m

el
s)

m
a
x
m

0 1000 2000 3000 4000 5000 6000 7000 80000

0.2

0.4

0.6

0.8

1
F1
F2

Figure 3.1: Mapping frequencies from Hz to mel.F1 corresponds to formula (3.3), while F2 corre-
sponds to formula (3.5).

The idea, thus, is to use a filterbank, where each filter captures a certain frequency
band, with the filterbank being more dense in the low frequencies and more sparse in the
high frequencies, where human hearing is less sensitive.

The filterbank used for MFCC extraction is composed of Q(≈ 20−40) triangular filters
Hj , each one of which has a bandwidth such that its cutoff frequencies are the central
frequencies of its two neighboring filters (in mel scale). Denoting the central frequency of
the j-th filter as f jc , where f0

c and fQ+1
c are the low and high cutoff frequencies of the first

and last filter, respectively, and additionally assuming that Hj(f jc) = 1, the j-th filter is

3.1 Mel Frequency Cepstrum Coefficients (MFCCs) 41

described by the equation

Hj [k] =



0 , k < f j−1
c

k − f j−1
c

f jc − f j−1
c

, f j−1
c ≤ k ≤ f jc

f j+1
c − k

f j+1
c − f jc

, f jc ≤ k ≤ f j+1
c

0 , k > f j+1
c

. (3.6)

The central frequencies are uniformly distributed in the mel scale. Thus, denoting for
simplicity as fh and fl the highest and lowest frequencies of the filterbank, the central
frequencies are given as

f jc =
N

Fs
B−1

(
B(fl) + j

B(fh)−B(fl)

Q+ 1

)
, (3.7)

where N is the length of the Discrete Fourier Transform (DFT) and Fs is the sampling
frequency.

Such a filterbank is illustrated in Figure 3.2, for 24 triangular filters and sampling
frequency Fs = 16kHz. For this example, we have f0

c = 0 and fQ+1
c = Fs/2. This is,

however, not necessary, since the very low or very high frequencies are often ignored, in
order to remove low- or high-frequency noise.

H
j

f(Hz)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

Figure 3.2: Filterbank used to extract MFCCs (24 filters).

Instead of normalizing the filters with respect to height, they can be normalized with
respect to area. In that case, for each filter we have

N−1∑
k=0

Hj [k] = 1 . (3.8)

42 Chapter 3

and the j-th filter is described by the equation

Hj [k] =



0 , k < f j−1
c

2
(
k − f j−1

c

)
(
f jc − f j−1

c

)(
f j+1
c − f j−1

c

) , f j−1
c ≤ k ≤ f jc

2
(
f j+1
c − k

)
(
f j+1
c − f jc

)(
f j+1
c − f j−1

c

) , f jc ≤ k ≤ f j+1
c

0 , k > f j+1
c

. (3.9)

The next step is to compute the logarithm of the energy, say Gi(j) of the response of
the j-th filter when the input is the windowed frame si[n]. We know that the output of
a system in the frequency domain is equal to the product between the system’s frequency
response and the input’s Fourier transformation. Having that in mind, and using Parseval’s
theorem which relates the squared signal to the power spectrum according to the equation

N−1∑
n=0

s[n]2 =
1

N

N−1∑
k=0

|S[k]|2 , (3.10)

we directly concude that

Gi(j) = log

{
1

N

N−1∑
k=0

|Si[k] ·Hj [k]|2
}

= log

 2

N

N/2∑
k=0

|Si[k] ·Hj [k]|2
 , (3.11)

where Si[k] is the N -point DFT of si[n]. The additive constant log{2/N} is omitted, while
the following modified formula is also frequently used:

Gi(j) = log


N/2∑
k=0

|Si[k]|2 · |Hj [k]|

 . (3.12)

Finally, MFCCs for the i-th frame are the first Nc coefficients of the Discrete Cosine
Transform (DCT) of the energy {Gi(j)}Qj=1. A typical choice for speech recognition is
Nc = 13. More precisely, the coefficients 2− 13 are typically used. On those 12 features,
the squared energy of the signal is added, given by the equation (3.10), expressed in the
logarithmic domain.

The idea of using cepstral characteristics is based on the fact that for successful recog-
nition we need features able to distinguish the different phonemes as much as possible.
Those features are related to the position of the various articulators of the vocal tract or,
in other words, to the formants of the “filter”, and not to the excitation source (e.g. vocal
cords vibrating). As we know, cepstral analysis is a reliable way to distinguish the source
spectrum from the filter spectrum [3].

On the other hand, DCT is used in order to decorrelate and compress the data (since we
keep only the first few coefficients). In particular, for speech signals, DCT approximates
very well the Karhunen-Loève Transform (KLT), which is optimal with respect to the
minimization of the energy of the compression error [28]. Additionally, DCT outputs
real-valued vectors, somthing which facilitates their efficient storage and processing.

3.1 Mel Frequency Cepstrum Coefficients (MFCCs) 43

Two practical details on the aforementioned procedure are the techiques of dithering
liftering. Dithering is the process of adding 1-bit random noise bit to the waveform, which
is almost equivalent to adding a constant to the spectrum. This takes place in order to
eliminate the existence of zero values in the spectrum, something which could lead to
problems during the computation of the corresponding logarithmic values.

As far as liftering is regarded, it is a process during which each MFCC xi, is multi-
plied with a weight wi, so that a new feature yi [29] is produced. It is, thus, a linear
transformation, which is described by the relationship

y = Wx , (3.13)

where W = diag{w1, w2, · · · , wNc}. The diagonal elements of W are chosen in such a way
that all the final MFCCs have a similar dynamic range. This was of great importance dur-
ing the first days of speech recognition, when it was based on the Dynamic Time Warping
(DTW) algorithm and on the euclidean distances between the feature vectors. Nowa-
days, liftering has limited pratical value, but is often used for historical and compatibility
reasons.

3.1.2 Cepstral Mean (& Variance) Normalization

A very simple technique proposed to aleviate the negative effects of noise is the so-called
Cepstral Mean Normalization (CMN), also known as Cepstral Mean Subtraction (CMS).
Initially, it was used as a solution to the problems imposed because of recordings with
different microphones, but it was shown that this technique can improve the performance
even when the communication or recording channel doesn’t change [30].

In general, CMN helps a lot when there is convolutive noise, including distortions
because of microphone-specific characteristics and distorions due to reverberation, where
the clean speech signal is convlolved with the impulse response of the microphone or the
room, respectively. Having in mind the properties of the Fourier Transform, as well as
the identity log(x · y) = log x + log y, we directly get that convolution in time domain
is equivalent to summation in quefrency domain, which is the domain where the cepstral
features are estimated. Formally, if y(n) = x(n)∗h(n), then Y (q) = X(q)+H(q), where the
quefrency is denoted by q. Assuming that the impulse response h(n) is fixed throughout
the utterance, for the i-th frame (out of totally F frames) we ’ll have Yi(q) = Xi(q)+H(q).
Subtracting the arithmetic mean of all the frames we get

Y ′i (q) = Yi(q)−
1

F

F∑
i=1

Yi(q)

= Xi(q)−
1

F

F∑
i=1

Xi(q) ,

so it becomes clear that the effect of h(n) has been eliminated. If we additionally normalize
with respect to the standard deviation, then the resulting transformation is called Cepstral
Mean and Variance Normalization (CMVN).

For multiple-speaker speech recognition applications, it is often suggested that CMVN
is done per speaker and not per utterance, so that the sufficient statistics are collected
from all the frames of all the utterances of a specific speaker (of course, this assumes that
the speaker information is available). That way, any variations in the cepstral features
due to speaker-specific characteristics are eliminated.

44 Chapter 3

3.1.3 Derivatives of MFCCs

For time windows shorter than 100msec, human capability to distinguish different
speech characteristics is not satisfactory [31]. Thus, since for short-term features, the
frame length is less than ∼ 30msec, it seems that we need a way to include information
about a longer time interval in the feature set.

The simplest way to deal with the aforementioned issue is to augment the i-th feature
vector so that it contains features which correspond not only to the i-th frame, but also
to its neighboring frames, or its relationship with them. Here we will mention the most
widely used approach, first proposed in [32], which is the augmentation of the MFCCs
vector with dynamic features which capture the temporal behavior of the MFCCs. It is
noted that, even though we refer to MFCCs, the method is much more general.

The first-order synamic features, often called velocity coefficients and denoted as
∆s, are estimated as the first-order orthogonal polynomial coefficients. Considering the
consecutive frames {· · · , i − 2, i − 1, i, i + 1, i + 2, · · · }, and assuming that 13 MFCCs
x(k), k = 1, 2, · · · , 13 have been extracted for each frame, the velocity coefficients for the
i-th frame are stimated as

∆xi(k) =

M∑
m=−M

m · xi+m(k)

M∑
m=−M

m2

. (3.14)

Constant M denotes the context of the derivation, that is how many neighboring frames
are taken into consideration during the computation of the dynamic features. M is usually
in the range [1, 10] [32].

Equation (3.14) can be re-used to get second-order (acceleration or ∆∆), third-order, ...
coefficients. Fr example, if a recognizer uses 13 MFCCs, together with the corresponding
∆ and ∆∆ coefficients, then the length of the feature vector is 3 · 13 = 39.

3.1.4 Delta-Spectral Cepstal Coefficients

An idea proposed for robust speech recognition has to do with the computation of
the dynamic features in the spectral, instead of the cepstral, domain, with the resulting
features known as Delta-Spectral Cepstral Coefficients (DSCCs) [33].

The idea is based on the fact that the spectral characteristics of human speech change
much faster than the spectral characteristics of the noisy background. It is supported that
this different behavior between speech and background can be better reflected directly in
the spectral domain, that is before the non-linearity of the logarithm and the DCT take
place. Again, the approach is general, but we are going to describe it when applied to and
combined with MFCCs.

Figure 3.3 presents the workflow followed for the DSCC extraction, and is compared
to the extraction of the usual ∆ and ∆∆ coefficients. DSCCs are typically combined with
the 13 static MFCCs, generating again a vector with 39 features.

Histogram normalization takes place because computing the derivative in the spectral
domain results in features with a very large dynamic range - something which is not
desired by itself - but most of the coefficients have values around the neihborhood of 0.

3.2 Perceptual Linear Prediction (PLP) and RASTA Analysis 45

(i)

(ii)

(iii)

Figure 3.3: Workflow followed to extract MFCCs and DSCCs. (i) Initial stages of the process. (ii)
MFCC and standard ∆ and ∆∆ coefficients extraction. (iii) DSCC extraction. [image adapted
from [33]]

After this normalization, which is applied per utterance, the values of the coefficients are
following a normal distribution with zero mean and unit standard deviation. The effect
of this gaussianization is visually depicted in Figure 3.4.

It is noted that instead of (3.14), the ∆ coefficients for DSCCs are extracted using the
formula

∆xi(k) = xi+M − xi−M . (3.15)

3.2 Perceptual Linear Prediction (PLP) and RASTA Anal-
ysis

3.2.1 PLP Analysis and Feature Extraction

Another widely used feature set in the short-term family is the one steming from the
Perceptual Linear Prediction (PLP). We refer to the resulting features as [34]. PLPs are
based on the same fundamental principles as MFCCs, but in PLP analysis, there is an
effort for more precise estimation of the human autitory characteristics.

The starting point for PLP was linear prediction, which was used during the first
years of speech recognition. Linear prediction provides a tool for satisfactory estimation
of the poles of the transfer function which describes the human speech production system.
Those poles correspond to the so-called formants, which are the characteristic resonanses
of the vocal tract. Formants change through time, depending on the shape of the vocal
tract for the production of the different sounds; thus, estimating the formants we can in
fact estimate the sound to be recognized. One of the main disadvantages of the linear
prediction, however, is that the resulting model approximates the speech spectrum with
the same accuracy at every frequency. However, the sensitivity of human hearing decreases
as the frequency increases, especially above 800Hz.

PLP, thus, tries to aleviate the aforementioned disadvantage. Moreover, according to
[34], linear prediction will give different results for two utterances with different spectra,
but with the same linguistic information, while PLP will give similar results, something
with obvious advantages for the final goal of speech recognition.

46 Chapter 3

Time (sec)

D
el
ta

v
a
lu
e

0.2 0.4 0.6 0.8 1 1.2 1.4

×107

−100

−80

−60

−40

−20

0

20

40

60

80

100

(i)

Delta value

#
o
c
c
u
ra
n
c
ie
s

×108
−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

(ii)

Time (sec)

D
el
ta

v
a
lu
e

0.2 0.4 0.6 0.8 1 1.2 1.4
−3

−2

−1

0

1

2

3

(iii)

Delta value

#
o
c
c
u
ra
n
c
ie
s

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

(iv)

Figure 3.4: Effect of histogram normalization during DSCC extraction. (i) DSCC trajectory for
the 10th filter of the bank before the normalization. (ii) Histograms of the values in (i). (iii) DSCC
trajectory for the 10th filter of the bank before the normalization. (iv) Histogram of the values in
(iii). We plot the first-order coefficients for a speech signal recorded with a close-talk microphone.

As is the case during the MFCC extraction, the signal is first windowed into overlapping
frames using a Hamming (or Hamming-like) window and then the power spectrum is
computed through DFT. Without passing to the logarithmic domain, we conclude to the
equation (3.16) (similarly to (3.12)).

Gi(j) =

N/2∑
k=0

{
|Si[k]|2 · |Hj [k]|

}
(3.16)

For PLPs, however, the non-linear psycho-acoustic scale used is Bark and not mel.
The formal mapping between a frequency expressed inHz and the corresponding frequency
in Barks is not unique, but the one used in [34] is given by the equations (3.17)-(3.18),

3.2 Perceptual Linear Prediction (PLP) and RASTA Analysis 47

and the corresponing result is illustrated in Figure 3.5.

B = 6 arcsinh

(
f

600

)
= 6 log

 f

600
+

√(
f

600

)2

+ 1

 (3.17)

f = 600 sinh

(
B

6

)
(3.18)

f(Hz)

B
(B

a
rk
s)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

6

8

10

12

14

16

18

20

Figure 3.5: Mapping frequencies from Hz to Bark.

The central frequencies of the filters are uniformly distributed in the Bark scale, with
the central frequency of the first filter being equal to 0Hz and the distince between any two
consecutive filters being 1Bark. So, if, for example, the sampling frequency is 16kHz, 21
filters will be needed, the last one of which will have a central frequency equal to 8398Hz,
that is a bit larger than the Nyquist frequency. All the filters have the same shape in the
Bark scale, which is described by the equation (3.19), where the central frequency of the
j-th filter is denoted as Bj

c .

Hj(B) =



0 , B −Bj
c < −1.3

102.5(B+0.5) ,−1.3 ≤ B −Bj
c ≤ −0.5

1 ,−0.5 ≤ B −Bj
c ≤ 0.5

10−(B−0.5) , 0.5 ≤ B −Bj
c ≤ 2.5

0 , B −Bj
c > 2.5

(3.19)

According to this equation, the filters have a trapezoid shape, where the slope towards
the low frequencies (10dB/Bark) os significantly smoother than the slope towards the
higher frequencies (25db/Bark) [35]. The filterbank is visually depicted in Figure 3.6 for
sampling frequency Fs = 16kHz.

Through such a filterbank, we say that the power spectrum of the signal si(n) is
decomposed into critical bands. For deterministic signals, the power spectrumis equal to

48 Chapter 3

H
j

f(Hz)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

Figure 3.6: Filterbank to extract PLPs. We assume a sampling frequency equal to 16kHz, so the
filterbank is composed of 21 filters.

the squared Fourier Transform of the signal [36], as used in equation (3.16). In acoustics,
a critical band is defined as the range of frequencies perceived as the same frequency by
the human ear, because they activate the same region of the basilar membrane [37]. Under
this viewpoint, human cochlea acts based on a set of filters called auditory filters.

The next step is to pass the output of (3.16) through a pre-emphasis filter aiming at
simulating the non-uniform perception of loudness in different frequencies, as this is re-
flected by the equal-loudness-level contours. An equal-loudness-level contour [38] contains
acoustic pressure points which are perceived as equally loud under different frequencies
by a human listener. The unit of measurement of loudness is phon and, by definition, two
sinusoids of equal phons are equally loud. Equal-loudness-level contours, according to ISO
226:2003 [39], are illustrated in Figure 3.7.

The introduction of the equal-loudness-level contours during audio feature extraction
is of great importance when trying to find features simulating the human auditory system,
since those contours are considered to reflect the frequency characteristics of this system
[38]. The filter in use simulates the sinsitivity of human hearing at about 40dB and is
described, in the frequency domain, by the equation

E(ω) =


ω4
(
ω2 + 56.8 · 106

)
(ω2 + 6.3 · 106)2 (ω2 + 0.38 · 109)

, Fs ≤ 10kHz

ω4
(
ω2 + 56.8 · 106

)
(ω2 + 6.3 · 106)2 (ω2 + 0.38 · 109) (ω6 + 9.58 · 1026)

, Fs > 10kHz

,

(3.20)
where ω = 2πf .

The weights introduced by this pre-emphasis filter can be incorporated into the weights
existing becuase of the filterbank. Intuitively, the result is a new filterbank, where the
shape of each filter is as depicted in Figure 3.6, but the height is increased as the frequency
increases. Additionally, the values for the first and last filters are set equal to their

3.2 Perceptual Linear Prediction (PLP) and RASTA Analysis 49

Frequency (Hz)

S
o
u
n
d
P
re
ss
u
re

L
ev

el
(d
B
)

102 103 104
0

20

40

60

80

100

120

80phons
70phons
60phons
50phons
40phons
30phons
20phons

Figure 3.7: Equal-loudness-level contours.

neighboring ones. So, equation (3.16) is now transformed into equation (3.21).

G̃i(j) =


G̃i(2) , j = 1

N/2∑
k=0

{
|Si[k]|2 · |E[k]Hj [k]|

}
, 2 ≤ j ≤ Q− 1

G̃i(Q− 1) , j = Q

(3.21)

Apart from the variable sensitivity of human ear depending on the frequency, there
are psychophysical laws which relate the real intensity of a sound source with its loudness
as perceived by a human. Those laws are part of a general group of emperical laws that
relate an activation with the psychological intensity that this activation triggers. [40]. As
far as the sound intensity is concerned, the corresponding psychophysical law is expressed
thorugh an exponential function where the exponent is equal to about 0.3. This perceived
loudness is measured with the so-called sones. To approximate this law during PLP
extraction the coefficients G̃i(j) are converted to Φi(j):

Φi(j) =
(
G̃i(j)

)0.33
(3.22)

Finally, we need to estimate the linear prediction coefficients for the vector Φi. To this
end, the autocorrelation method, and specifically the Levinson-Durbin [3] is used. Thus,
the autocorrelation needs to be calculated.

As already stated, Φi is estimated as the power spectrum of the signal si(n), after it
has been decomposed into critical bands and it has been further processed to simulate
specific characteristics of the human auditory system. But since the highest frequency of
the filterbank is the Nyquist frequency, and because of the symmetry of DFT, the entire

50 Chapter 3

power spectrum Φ̃i is equal to:

Φ̃i = [Φi(1),Φi(2), · · · ,Φi(Q− 1),Φi(Q),Φi(Q− 1), · · · ,Φi(2)]

We note that because of (3.21), we have that Φi(2) = Φi(1) and Φi(Q) = Φi(Q− 1).
Now, according to the Wiener-Khinchin Theorem [41], the power spectrum of a func-

tion is is equal to the Fourier Transfer of the autocorrelation of the function. Therefore,
in order to calculate the desired autocorrelation, we can just use the IDFT of Φ̃i.

Let the LPC modelling be of order p. Fomally that means that the speech signal si(n),
as perceived by a human, is generated by the difference equation (3.23), where ui(n) is
the excitation source and where the prediction coefficients ai,k are estimated through the
Levinson-Durbin algorithm.

si(n) =

p∑
k=1

ai,ksi(n− k) +Giui(n) (3.23)

Those coefficients can easily be converted to a set of cepstral coefficients {φ̂i(j)}, j =
0, 1, · · · , p which is exactly the set of PLPs for the signal si. To that end, the recursive
equation (3.24) is used [3].

φ̂i(j) =


logGi , j = 0

ai,j +

j−1∑
k=1

(
k

j

)
φ̂i(k)ai,j−k , 1 ≤ j ≤ p (3.24)

3.2.2 Robust Features Using RASTA Analysis

As we have already seen, the right spectral analysis of a speech signal can lead to
the successful recognition of the linguistic information carried by the signal because the
resulting spectral features reflect the shape of the vocal tract and, thus, the sounds pro-
duced through it. In order to move towards the filed of robust speech recognition, we
need to study the unique characteristics of the spectral features of speech, when compared
to spectral features extracted by different sounds (such as noise). The idea of RelAtive
SpecTrAl (RASTA) analysis [42] is moving exaxtly towards this direction.

RASTA analysis is a precursor of features based on the Modulation Frequency (MF)
and the Modulation Spectrum, ideas we are going to see again in section ??. MF is
the frequency with which the spectral characteristics of the signal are changing through
time, an important notion for speech recognition, since speech perception depends on
the spectral variations, that is on how the spectral features of a sound change compared
to its neighbors [42]. Human hearing is more sensitive into changes around 4Hz, while
modulation frequencies above 16Hz are almost negligible for speech intelligibility [43].
The above, in combination with the fact that articulators are moving in a rate lying in
the range [1Hz, 13Hz] [44], give direct clues for the range of modulation frequencies on
which we should focus.

The idea of RASTA analysis is based on filtering the signal in a suitable domain so that
only the necessery for recognition parts of the signal pass through the filter, while those
that vary slower or faster than the typical speech variations are filtered out. When RASTA
analysis is combined with the PLPs, as suggested in [42], the resulting features are called
RASTA-PLPs. In that case, RASTA analysis takes place after the spectral coefficients of

3.2 Perceptual Linear Prediction (PLP) and RASTA Analysis 51

the critical bands in the Bark scale have been extracted, according to (3.16), and before
the application of the pre-emphasis filter to simulate the equal-loudness-level contours. It
is comprised of three steps: the non-linear transformation of the spectral coefficients into
a new domain (let the transformation T), their filtering so that the frequency bands of
low interest are filtered out, and a new transformation of the result through the inverse
T−1 (or a similar transformation). It is noted that RASTA analysis is general and does
not strictly depend on the specific features used. For instance, RASTA filtering can be
applied during the MFCC extraction, before we pass to the cepstral domain, that is after
the step described by equation (3.12).

We will assume for the rest of our analysis that the distance between consecutive
windows is equal to 10msec, which means that the windowing rate is 1/10msec = 100Hz.
Therefore, we examine modulation frequencies in the range [0Hz, 50Hz]. The transfer
function of the filter proposed in [42] is

H(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.94z−1
. (3.25)

It is interesting to notice the strong relationship between RASTA analysis and the com-
putation of the ∆ coefficients, since the numerator in (3.25) closely matches the transfer
funciton of the filter that computes the ∆ coefficients. Specifically, for M = 2, using (3.14)
we get

∆x(k) =
1

10
[−2x(k − 2)− x(k − 1) + x(k + 1) + 2x(k + 2)]

⇒∆X(z) = 0.1[−2z−2X(z)− z−1X(z) + zX(z) + 2z2X(z)]

⇒H̃(z) =
∆X(z)

X(z)
= 0.1z2[−2− z−1 + z−3 + 2z−4] . (3.26)

In fact, the motivation behind RASTA analysis were indeed the ∆ coefficients and their
ability to partially eliminate the negative effects of the convolutive distortions [42]. How-
ever, ∆ coefficients cannot successfully be used on their own; so they are used in combina-
tion with the initial, static coefficients, which, as we have seen, are sensitive to distortions.
The frequency responses of H(z) and H̃(z) are illustrated in Figure 3.8.

We can observe that the filter for RASTA analysis has a relatively fixed response in the
range [1Hz, 10Hz], with the maximum being close to 4Hz, being in accordance with the
acoustic theory analyzed above. In constrast, during the extraction of the ∆ coefficients,
it seems that a few modulation frequencies are favored, which are not close to the ones
that characterize human speech. As a result, the linguistic content of the signal may be
distorted.

The question that has to be answered is which is a suitable transformation T . In
the case of convolutive noise, (e.g. due to reverberation or to channel/microphone vari-
abilities), then a reasonable option is to filter in the logarithmic domain. There, those
distortions appear as additive constants; thus it is easy to eliminate their effect. Therefore,
every spectral coefficient is passed through a log function, RASTA filtering is applied and
finally we apply the inverse logarithic function, which is just the exponential exp(·).

If, however, there is also additive noise, then the logarithmic domain is not suitable.
In that case the suggested transformation is

y = log(1 + Jx) , (3.27)

52 Chapter 3

Modulation Frequency (Hz)

M
a
g
n
it
u
d
e
(d
B
)

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

10

(i)

Modulation Frequency (Hz)

M
a
g
n
it
u
d
e
(d
B
)

0 5 10 15 20 25 30 35 40 45 50
−50

−40

−30

−20

−10

0

10

(ii)

Figure 3.8: (i)Frequency response for the filter H̃(z) used to estimate the ∆ coefficients.
(ii)Frequency response for the filter H(z) used for RASTA analysis.

where J is a constant. This domain behaves as linear when J � 1 and as logarithmic
when J � 1. The optimal choice for J is the one that assigns the largest possible part
of the clean signal to the logarithmic part of the non-linearity and the largest part of the
noise to the linear part. The inverse of (3.27) is

x =
ey − 1

J
. (3.28)

However, this function is not guaranteed to always being positive. So, in practice, the
inverse transform is approximated by

x =
ey

J
. (3.29)

When the equations (3.27), (3.29) are used for RASTA filtering, then the process is called
J-RASTA or Lin-Log RASTA.

The effect of PLP and RASTA-PLP analysis is obvious in Figure 3.9, where the initial
spectrogram of a signal, together with the corresponding spectrograms after PLP and
RASTA-PLP (of course before the conversion of the spectral features to the cepstral
domain), are illustrated. First of all, it is apparent that going from Hertz scale to Bark
scale, “more space” is devoted to the low frequencies. Additionally, we can see that after
RASTA filtering the temporal evolution is much smoother with fewer details. The amount
information that has remained after filtering is expected to capture everything needed for
the recognition of the linguistic content.

3.3 Power Normalized Cepstral Coefficients (PNCCs)

One of the numerous ideas suggested for robust speech recognition has led to a feature
set known as Power Normalized Cepstral Coefficients (PNCCs) [45]. The analysis follwed
here is mainly based on [46].

The extraction of PNCCs is a procedure similar to the MFCC extraction; it has, how-
ever, a few fundamental differences. Initially, the desired signal passes through a proem-
phasis system with transfer function given by (3.1) (where ã = 0.97) and is segmented into

3.3 Power Normalized Cepstral Coefficients (PNCCs) 53

Time (sec)

F
re
q
u
en

cy
(H

z)

0.2 0.4 0.6 0.8 1 1.2

1000

2000

3000

4000

5000

6000

7000

8000

(i) .

Time (sec)

F
re
q
u
en

cy
(B

a
rk
)

0.2 0.4 0.6 0.8 1 1.2

5

10

15

20

(ii) PLP .

Time (sec)

F
re
q
u
en

cy
(B

a
rk
)

0.2 0.4 0.6 0.8 1 1.2

5

10

15

20

(iii) RASTA-PLP .

Figure 3.9: Spectrogram of a speech signal before and after PLP and RASTA-PLP analysis.

overlapped frames using Hamming windows. For each frame, say si[n], we get, through
N -point DFT, the spectrum Si[k], which is analyzed by a filterbank Hj [k], j = 1, · · · , Q,
to get the coefficients Gi(j):

Gi(j) =

N/2∑
k=0

{∣∣Si[k] ·Hj [k]
∣∣2} (3.30)

Instead of the triangular filters used for MFCCs or the trapezoid filters used for PLPs,
here we use a filterbank of gammatone filters, which was propesed in [47] to model the
human cochlea. The impulse response g(t) of a gammatone filter is generally given as

g(t) = atn−1e−2πbt cos (2πfct+ φ) , (3.31)

where fc is the central frequency of the filter. The parameter b defines the length of the
impulse response of the filter, so its bandwidth as well, while n is the order of the filter

54 Chapter 3

and defines the slope of its “tails”. In the particular case, the values n = 4 and b =
1.019ERB(fc) are used. ERB (Equivalent Rectangular Bandwidth) has been introduced
to estimate the bandwidth of a non-symmetric IIR filter and is approximated as

ERB(fc) = 24.7
4.37fc
1000

+ 1 . (3.32)

The generated filterbank, where filters are linearly distributed in the ERB scale, is illus-
trated in Figure 3.10, for 24 filters and sampling frequency Fs = 16kHz, when the filters
are normalized with respect to their height.

H
j

f(Hz)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

Figure 3.10: Gammatone filterbank to extract PNCCs. We assume a sampling frequency equal to
16kHz, while the filterbank is composed of 24 filters. The central frequency of the first filter is
200Hz.

The coefficients Gi(j) are normalized with respect to Gpeak, which is equal to the 95th

percentile of the elements
{∑

j Gi(j)
}
i
:

G̃i(j) = g0
Gi(j)

Gpeak
, (3.33)

where g0 is a constant used to have a reasonable dynamic range.
The next stages comprise a process called Power Bias Subtraction (PBS). PBS aims

at the maximization of the sharpness of the power spectrum in different frequencies (after
it is passed through the filterbank), since human hearing is more sensitive to spectral
changes, when compared to the relatively stationary spectral background. If PBS doesn’t
take place, the resulting features are called Simple PNCCs (SPNCCs) [48]. The first step
of PBS is to find the mean-duration power through the running average of G̃i(j):

Qi(j) =
1

2C + 1

j+C∑
j′=j−C

G̃i(j
′) (3.34)

In order to reduce the effect of the spectral background, a constant q0 is subtracted from
the coefficients Qi(j). However, to avoid very small values, there is a threshold qf . Thus,
we get the coefficients

Q̃i(j) = max {Qi(j)− q0, qf} . (3.35)

3.3 Power Normalized Cepstral Coefficients (PNCCs) 55

The exact values of q0 and qf are analytically estimated through the proposed searching
algorithm in [46], which is based on the ratio of the arithmetic mean over the geometric
mean of the power coefficients Qi(j). A final smoothing of the initial spectral values takes
place:

Pi(j) =

 1

2L+ 1

j+L∑
j′=j−L

Q̃i(j
′)

Qi(j′)

 G̃i(j) (3.36)

Finally, after the coefficients Pi(j) (which are identical to G̃i(j) for the case of SPNCCs)
pass through a non-linearity, DCT is applied and the first Nc coefficients are used, where
typically Nc = 13, like in the MFCC case. The non-linear function used is not the
logarithm, like in MFCCs, but an exponential function where the exponent is in the range
(0, 1). This exponent, which for PLPs was equal to 0.33, is here defined equal to 1/15.

56 Chapter 3

Bibliography

[1] F. Rumsey and T. McCormick, Sound and Recording. Focal Press, 2009.

[2] D. Jurafsky and J. Martin, Speech and Language Processing. Prentice Hall, 2008.

[3] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals. Prentice Hall,
1978.

[4] T. Hori and A. Nakamura, Speech Recognition Algorithms Using Weighted Finite-
State Transducers. Morgan & Claypool, 2013.

[5] G. A. Fink, Markov models for pattern recognition: from theory to applications.
Springer, 2008.

[6] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Prentice Hall,
1993.

[7] J. Pinto, B. Yegnanarayana, H. Hermansky, and M. M. Doss, “Exploiting contex-
tual information for improved phoneme recognition,” in Acoustics, Speech and Signal
Processing, 2008. ICASSP 2008. IEEE International Conference on, pp. 4449–4452,
IEEE, 2008.

[8] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[9] S. J. Young, “The general use of tying in phoneme-based HMM speech recognisers,”
in Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE Interna-
tional Conference on, vol. 1, pp. 569–572, IEEE, 1992.

[10] X. D. Huang and M. A. Jack, “Semi-continuous hidden markov models for speech
signals,” Computer Speech & Language, vol. 3, no. 3, pp. 239–251, 1989.

[11] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying for high accuracy
acoustic modelling,” in Proceedings of the workshop on Human Language Technology,
pp. 307–312, Association for Computational Linguistics, 1994.

[12] J.-P. Hosom, Automatic Time Alignment of Phonemes Using Acoustic-Phonetic nfor-
mation. PhD thesis, Oregon Graduate Institute of Science and Technology, 2000.

[13] A. Katsamanis, I. Rodomagoulakis, G. Potamianos, P. Maragos, and A. Tsiami, “Ro-
bust far-field spoken command recognition for home automation combining adap-
tation and multichannel processing,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pp. 5547–5551, IEEE, 2014.

57

58 Bibliography

[14] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, 623–656, 1948.

[15] I. H. Witten and T. C. Bell, “The zero-frequency problem: Estimating the prob-
abilities of novel events in adaptive text compression,” Information Theory, IEEE
Transactions on, vol. 37, no. 4, pp. 1085–1094, 1991.

[16] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for lan-
guage modeling,” in Proceedings of the 34th annual meeting on Association for Com-
putational Linguistics, pp. 310–318, Association for Computational Linguistics, 1996.

[17] G. Donaj and Z. Kačič, “The use of several language models and its impact on word
insertion penalty in lvcsr,” in Speech and Computer, pp. 354–361, Springer, 2013.

[18] M. Sipser, Introduction to the Theory of Computation. Thomson Course Technology,
2006.

[19] W. Kuich and A. Salomaa, Semirings, automata, languages. Springer Verlag, 1986.

[20] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in speech
recognition,” Computer Speech & Language, vol. 16, no. 1, pp. 69–88, 2002.

[21] M. Mohri, F. Pereira, and M. Riley, “The design principles of a weighted finite-state
transducer library,” Theoretical Computer Science, vol. 231, no. 1, pp. 17–32, 2000.

[22] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “Openfst: A general and
efficient weighted finite-state transducer library,” in Implementation and Application
of Automata, pp. 11–23, Springer, 2007.

[23] M. Mohri, “Weighted automata algorithms,” in Handbook of weighted automata,
pp. 213–254, Springer, 2009.

[24] M. Riley, F. Pereira, and M. Mohri, “Transducer composition for context-dependent
network expansion.,” in EUROSPEECH, pp. 1427–1430, 1997.

[25] S. B. Davis and P. Mermelstein, “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences,” Acoustics, Speech and
Signal Processing, IEEE Transactions on, vol. 28, no. 4, pp. 357–366, 1980.

[26] T. Ganchev, N. Fakotakis, and G. Kokkinakis, “Comparative evaluation of vari-
ous mfcc implementations on the speaker verification task,” in Proceedings of the
SPECOM, vol. 1, pp. 191–194, 2005.

[27] M. Slaney, “Auditory toolbox version 2. interval research corporation,” Indiana: Pur-
due University, vol. 2010, pp. 1998–010, 1998.

[28] M. Unser, “On the approximation of the discrete Karhunen-Love transform for sta-
tionary processes,” Signal Processing, vol. 7, no. 3, pp. 231–249, 1984.

[29] K. K. Paliwal, “Decorrelated and liftered filter-bank energies for robust speech recog-
nition.,” in Eurospeech, vol. 99, pp. 85–88, 1999.

Bibliography 59

[30] R. Schwartz, T. Anastasakos, F. Kubala, J. Makhoul, L. Nguyen, and G. Zavaliagkos,
“Comparative experiments on large vocabulary speech recognition,” in Proceedings
of the workshop on Human Language Technology, pp. 75–80, Association for Compu-
tational Linguistics, 1993.

[31] M. Wölfel and J. McDonough, Distant Speech Recognition. Wiley, 2009.

[32] S. Furui, “Speaker-independent isolated word recognition using dynamic features of
speech spectrum,” Acoustics, Speech and Signal Processing, IEEE Transactions on,
vol. 34, no. 1, pp. 52–59, 1986.

[33] K. Kumar, C. Kim, and R. M. Stern, “Delta-spectral cepstral coefficients for ro-
bust speech recognition,” in Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pp. 4784–4787, IEEE, 2011.

[34] H. Hermansky, “Perceptual linear predictive (plp) analysis of speech,” the Journal of
the Acoustical Society of America, vol. 87, no. 4, pp. 1738–1752, 1990.

[35] H. Hermansky, “Should recognizers have ears?,” Speech communication, vol. 25, no. 1,
pp. 3–27, 1998.

[36] P. Stoica and R. L. Moses, Spectral analysis of signals. Pearson/Prentice Hall Upper
Saddle River, NJ, 2005.

[37] S. A. Gelfand, Hearing: An introduction to psychological and physiological acoustics.
CRC Press, 2009.

[38] Y. Suzuki and H. Takeshima, “Equal-loudness-level contours for pure tones,” The
Journal of the Acoustical Society of America, vol. 116, no. 2, pp. 918–933, 2004.

[39] ISO, “226: 2003: Acoustics–normal equal-loudness-level contours,” International Or-
ganization for Standardization, 2003.

[40] S. S. Stevens, “On the psychophysical law.,” Psychological review, vol. 64, no. 3,
p. 153, 1957.

[41] D. W. Ricker, Echo signal processing, vol. 725. Springer Science & Business Media,
2012.

[42] H. Hermansky and N. Morgan, “Rasta processing of speech,” Speech and Audio Pro-
cessing, IEEE Transactions on, vol. 2, no. 4, pp. 578–589, 1994.

[43] R. Drullman, J. M. Festen, and R. Plomp, “Effect of temporal envelope smearing on
speech reception,” The Journal of the Acoustical Society of America, vol. 95, no. 2,
pp. 1053–1064, 1994.

[44] C. L. Smith, C. P. Browman, R. S. McGowan, and B. Kay, “Extracting dynamic
parameters from speech movement data,” The Journal of the Acoustical Society of
America, vol. 93, no. 3, pp. 1580–1588, 1993.

[45] C. Kim and R. M. Stern, “Feature extraction for robust speech recognition using a
power-law nonlinearity and power-bias subtraction.,” in INTERSPEECH, pp. 28–31,
2009.

60 Bibliography

[46] C. Kim and R. M. Stern, “Feature extraction for robust speech recognition based on
maximizing the sharpness of the power distribution and on power flooring,” in Acous-
tics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on,
pp. 4574–4577, IEEE, 2010.

[47] R. D. Patterson, K. Robinson, I. Holdsworth, D. McKeown, C. Zhang, and M. Aller-
hand, “Complex sounds and auditory images,” in Auditory Physiology and Perception:
Proceedings of the 9th International Symposium on Hearing Held in Carcens, France
on 9-14 June 1991, no. 83, p. 429, Pergamon, 1992.

[48] C. Kim and R. M. Stern, “Power-normalized cepstral coefficients (pncc) for robust
speech recognition,” IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing (TASLP), vol. 24, no. 7, pp. 1315–1329, 2016.

	Automatic Speech Recognition
	Feature Extraction
	Acoustic Model
	Hidden Markov Models
	Gaussian Mixture Models
	Training the Acoustic Model
	Tied States and Decision Trees
	Forced Alignment

	Language Model
	Statistical Language Modelling with n-gram Models
	Smoothing Using the Witten-Bell Method

	Search and Decoding
	Recognition Evaluation

	Weighted Finite-State Transducers
	Main Definitions
	Basic Operations
	Rational Operations
	Projection, Inversion, and Composition

	Optimization Operations
	WFSTs and Speech Recognition
	Construction of the Components
	Composition and Optimization

	Feature Sets for ASR
	Mel Frequency Cepstrum Coefficients (MFCCs)
	Extraction of MFCCs
	Cepstral Mean (& Variance) Normalization
	Derivatives of MFCCs
	Delta-Spectral Cepstal Coefficients

	Perceptual Linear Prediction (PLP) and RASTA Analysis
	PLP Analysis and Feature Extraction
	Robust Features Using RASTA Analysis

	Power Normalized Cepstral Coefficients (PNCCs)

	Bibliography

