#### Automated Quality Assessment of CBT Sessions through Highly Contextualized Language Representations

Nikolaos (Nikos) Flemotomos

University of Southern California Signal Analysis & Interpretation Laboratory

#### March 17, 2022

Data Science for Mental Health Interest Group @ The Alan Turing Institute



#### Why do we need to evaluate psychotherapy?

- lifetime prevalence of diagnosable mental disorders: more than 50%
- about 1 in 7 adults receives mental health services annually



#### Need for quality assurance

- more effective training
- more efficient supervision
- more positive clinical outcomes



### Why do we need to evaluate psychotherapy?

- lifetime prevalence of diagnosable mental disorders: more than 50%
- about 1 in 7 adults receives mental health services annually



#### Need for quality assurance

- more effective training
- more efficient supervision
- more positive clinical outcomes

- essential for improved performance: feedback to the therapist
  - 1. client progress monitoring
  - 2. performance-based feedback



- psychotherapy: intervention based on spoken language
  ⇒ quality encoded in therapists' and patients' speech/language characteristics
- quality assessment traditionally addressed by human raters using recorded sessions
  - time-consuming
  - cost-prohibitive



- psychotherapy: intervention based on spoken language
  ⇒ quality encoded in therapists' and patients' speech/language characteristics
- quality assessment traditionally addressed by human raters using recorded sessions
  - time-consuming
  - cost-prohibitive

 $\Rightarrow$  computational methods for automatic evaluation





### Behavioral coding in cognitive behavioral therapy

- CBT: one of the most popular psychotherapeutic approaches
- Aims at shifting the patient's patterns of thinking

#### Monitoring CBT quality: Cognitive Therapy Rating Scale (CTRS)

• 11 session-level codes scored on a 7-point Likert scale (0=poor, 6=excellent)

| abbreviation                                                                                        | meaning                                                                                                                               |                             |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $egin{aligned} & \mathrm{ag} & \ & \mathrm{fb} & \ & \mathrm{pt} & \ & \mathrm{hw} & \end{aligned}$ | agenda<br>feedback<br>pacing and efficient use of time<br>homework                                                                    | management<br>and structure |
| un<br>ip<br>co                                                                                      | understanding<br>interpersonal effectiveness<br>collaboration                                                                         | good<br>relationship        |
| gd<br>cb<br>sc<br>at                                                                                | guided discovery<br>focusing on key cognitions and behaviors<br>strategy for change<br>application of cognitive-behavioral techniques | conceptualization           |
| $\sum_{i=1}^{11} \operatorname{code}_i \geq$                                                        | $40 \Rightarrow \text{competent delivery of CBT}$                                                                                     |                             |



Existing methods...

- use hand-crafted and/or sparse indicator features
  - can we better use context?
- model behavioral codes (and total CTRS) independently
  - but total CTRS in the sum of 11 codes!
- study CBT-related constructs appearing in short text excerpts
  - but a typical CBT session consists of hundreds of talk turns!



### Rich transcription pipeline

- Our algorithms for automatic behavior coding are based on linguistic information (text).
- How do we get text from audio recordings?



#### Rich transcription pipeline

- Our algorithms for automatic behavior coding are based on linguistic information (text).
- How do we get text from audio recordings?



#### Model: single-task approach

- Directly model total CTRS as the binarized output variable.
- loss function: binary cross-entropy



• BERT is adapted by continuing training on in-domain data (automatically transcribed psychotherapy sessions).



### Model: multi-task approach

- Model each CTRS code in a regression setting.
- Total CTRS is calculated as the (unweighted) sum and then binarized.
- loss functions: mean squared error



• advantage: higher interpretability





#### CBT dataset

- 1,018 recorded, manually coded CBT sessions (mean dur = 41.5min), automatically transcribed
- available metadata
  - *clinic:* 383 therapists across <u>25 clinics</u>
  - *level of care:* <u>6 categories</u> (inpatient, outpatient, school-based, etc.)
  - *population:* <u>9 population groups</u> (child, adult, substance use, etc.)
  - assessment time wrt CBT training: <u>7 timestamps</u> (pre-workshop, post-workshop, 1 month after, etc.)





#### CBT dataset

- 1,018 recorded, manually coded CBT sessions (mean dur = 41.5min), automatically transcribed
- available metadata
  - *clinic:* 383 therapists across <u>25 clinics</u>
  - *level of care:* <u>6 categories</u> (inpatient, outpatient, school-based, etc.)
  - *population:* <u>9 population groups</u> (child, adult, substance use, etc.)
  - assessment time wrt CBT training: <u>7 timestamps</u> (pre-workshop, post-workshop, 1 month after, etc.)



- 100 additional CBT sessions used to adapt the ASR pipeline
- 4,263 recorded, non-coded psychotherapy (not necessarily CBT) sessions for BERT adaptation



|                             |                  | all utterances |             | therapist-only utterances |            |
|-----------------------------|------------------|----------------|-------------|---------------------------|------------|
| utterance<br>representation | metadata<br>info | single-task    | multi-task  | single-task               | multi-task |
| BERT-base                   | ×                | 63.43          | 61.03       | 63.88                     | 62.40      |
|                             | $\checkmark$     | 65.42          | $70.13^{*}$ | $66.80^{\#}$              | $71.25^*$  |
| adapted BERT                | ×                | 64.10          | 62.04       | 65.52                     | 63.76      |
|                             | $\checkmark$     | $66.94^{\#}$   | $71.56^*$   | $68.52^*$                 | $72.61^*$  |
|                             |                  | 10 ( ) )       | 1.1 #       |                           |            |

 $F_1$  score (%) – 10-fold cross validation. #p<0.05, \*p<0.01



| proposed technique | no    | yes   | relative<br>improvement |
|--------------------|-------|-------|-------------------------|
| adapt BERT         | 65.54 | 66.88 | +2.04%                  |
| metadata info      | 63.27 | 69.15 | +9.29%                  |
| multi-task         | 65.58 | 66.85 | +1.94%                  |
| only therapist     | 65.58 | 66.84 | +1.92%                  |

each row: mean  $F_1$  score (%) across all the remaining  $2^3=8$  combinations when the corresponding technique is or is not applied



| proposed technique | no    | yes   | relative<br>improvement |
|--------------------|-------|-------|-------------------------|
| adapt BERT         | 65.54 | 66.88 | +2.04%                  |
| metadata info      | 63.27 | 69.15 | +9.29%                  |
| multi-task         | 65.58 | 66.85 | +1.94%                  |
| only therapist     | 65.58 | 66.84 | +1.92%                  |

each row: mean  $F_1$  score (%) across all the remaining  $2^3=8$  combinations when the corresponding technique is or is not applied

- adapted BERT > pre-trained BERT-base
  - fine-tuned both on the domain *and* on ASR-induced errors
- the rapist-only utterances > all utterances
  - CTRS codes are focused only on the rapist behavior
- incorporation of metadata information beneficial
  - however, such information may not be available in general
- multi-task > single-task when metadata is provided
  - metadata improve robustness when predicting each code  $\Rightarrow$  overall robustness



#### Localization of CTRS codes

- CBT is a highly structured psychotherapeutic approach  $\Rightarrow$  reflected in several of the CTRS codes
- Using the attention mechanisms, we can identify salient utterances  $\Rightarrow$  reveal this structure,
  - $\Rightarrow$  examine how the practitioner focuses on different aspects of CBT throughout therapy





- Is it acceptable to use **patients**' sensitive data?
  - all patients and therapists sign a consent form
  - approved by Institutional Review Board (sufficient?)
  - all data are de-identified wrt patients





- Is it acceptable to use **patients**' sensitive data?
  - all patients and therapists sign a consent form
  - approved by Institutional Review Board (sufficient?)
  - all data are de-identified wrt patients



- What if such a system is used to blindly evaluate a therapist? That could even mean loosing their job!
  - the goal is not to replace human supervision, but rather augment the supervisor's capabilities and offer a tool for self-assessment
  - users should be adequately trained to understand the meaning of automatically generated feedback and evaluation scores



#### Practical and ethical implications – II



- How to mitigate potential biases?
  - adaptation to the actual use case
    - (e.g., perceptions about psychotherapy differ across cultures)
  - employ large and diverse pools of human coders
  - fairness through unawareness (both for models and for annotators)



### Practical and ethical implications – II



- How to mitigate potential biases?
  - adaptation to the actual use case
    - (e.g., perceptions about psychotherapy differ across cultures)
  - employ large and diverse pools of human coders
  - fairness through unawareness (both for models and for annotators)

- Any additional requirements before using in clinical settings?
  - incorporate confidence metrics and quality safeguards of the model
  - users should be able to question model predictions (human-in-the-loop)





#### Conclusions

- Introduced a model for automatic evaluation of CBT sessions and compared various configurations
- Demonstrated the importance of context both linguistic and non-linguistic through available metadata



#### Conclusions

- Introduced a model for automatic evaluation of CBT sessions and compared various configurations
- Demonstrated the importance of context both linguistic and non-linguistic through available metadata

#### **Future Vision**

- Widespread adoption of psychotherapy evaluation systems in clinical practice, leading to improved quality of services
- under a proper ethical and practical framework, ensuring
  - data privacy
  - bias mitigation
  - prudent usage and interpretation
  - proper error handling







## UNIVERSITY of WASHINGTON

# Thank you!



