Multimodal Clustering with Role Induced Constraints for Speaker Diarization

Nikolaos Flemotomos, Shrikanth Narayanan

University of Southern California Department of Electrical and Computer Engineering Signal Analysis and Interpretation Laboratory

Interspeech 2022

500

500

Example scenarios:

- business meetings
- doctor-patient interactions
- broadcast news programs
- call centers
- lectures
- interviews
- ...

images from the Noun Project creators: Nubaia Karim Barsha, Gan Khun Lay, Arafat Uddin, Llisole, ProSymbols

Multimodal Clustering with Role Induced Constraints

Example scenarios:

- business meetings
- doctor-patient interactions
- broadcast news programs
- call centers
- lectures
- interviews
- ...

different $roles \Rightarrow$ distinguishable linguistic patterns \Rightarrow Can we use language to assist diarization?

images from the Noun Project creators: Nubaia Karim Barsha, Gan Khun Lav, Arafat Uddin, Llisole, ProSymbols

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

Some possible scenarios and strategies:

• different roles are played by different speakers *e.g., teacher vs. students*

 \Rightarrow CL constraints between segments with different roles

image from freepik.com by vector4stock

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

Some possible scenarios and strategies:

• different speakers play different roles e.g., host vs. interviewer vs. guest

 \Rightarrow ML constraints between segments with same roles

image from freepik.com by pch.vector

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

Some possible scenarios and strategies:

- every speaker mapped to a distinct role *e.g.*, one doctor vs. one patient
 - \Rightarrow both ML and CL constraints

image from freepik.com by pch.vector

- extract role information to impose constraints during audio-based clustering
- focus on segment-level pairwise constraints: Must-Link (ML) and Cannot-Link (CL)

Some possible scenarios and strategies:

- every speaker mapped to a distinct role *e.g.*, one doctor vs. one patient
 - \Rightarrow both ML and CL constraints

• adopt framework of constrained spectral clustering

image from freepik.com by pch.vector

- Inormalized Laplacian
 - $\mathbf{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$ $\mathbf{D} = \operatorname{diag} \{ d_1, d_2, \cdots, d_N \}$

(b) \hat{k} -means on eigenvectors of **L**

 $\mathbf{X} = [\mathbf{x}_1 | \mathbf{x}_2 | \cdots | \mathbf{x}_{\hat{k}}]$ corresponding to the \hat{k} smallest eigenvalues

*Eigenvalues are only given for visualization purposes; they do not correspond to W.

Multimodal Clustering with Role Induced Constraints

Constrained Clustering

- increase similarity between ML-constrained pairs
- decrease similarity between CL-constrained pairs

2 thresholding & symmetrization (\mathbf{W})

Constrained Spectral Clustering: E^2CP

Integrate initial set of constraints through the Exhaustive and Efficient Constraint Propagation (E^2CP) algorithm:

 $\textcircled{0} \quad \text{construct constraint matrix } \mathbf{Z}$

$$\mathbf{Z}_{ij} = \begin{cases} +1, & \text{if } \exists \text{ ML constraint between } i \text{ and } j \\ -1, & \text{if } \exists \text{ CL constraint between } i \text{ and } j \\ 0, & \text{if } \nexists \text{ any constraint between } i \text{ and } j \end{cases}$$

Propagate constraints to the entire session

$$\mathbf{Z}^* = (1-\alpha)^2 (\mathbf{I}-\alpha\bar{\mathbf{L}})^{-1} \mathbf{Z} (\mathbf{I}-\alpha\bar{\mathbf{L}})^{-1}, \quad \bar{\mathbf{L}} = \bar{\mathbf{D}}^{-1/2} \hat{\mathbf{W}} \bar{\mathbf{D}}^{-1/2}, \quad \alpha \in [0,1]$$

 α : how much to change the constraints
vs. how much to change the affinity scores
 $\alpha = 0 \Rightarrow \mathbf{Z}^* = \mathbf{Z} \Rightarrow \text{only rely on the initial constraints}$
 $\alpha = 1 \Rightarrow \mathbf{Z}^* = \mathbf{0} \Rightarrow \text{ ignore the constraints}$

O update affinity scores

$$\hat{\mathbf{W}}_{ij} \leftarrow \begin{cases} 1 - (1 - \mathbf{Z}_{ij}^*)(1 - \hat{\mathbf{W}}_{ij}), & \text{if } \mathbf{Z}_{ij}^* \ge 0 \text{ (move closer to 1)} \\ (1 + \mathbf{Z}_{ij}^*) \hat{\mathbf{W}}_{ij}, & \text{if } \mathbf{Z}_{ij}^* < 0 \text{ (move closer to 0)} \end{cases}$$

Z. Lu & Y. Peng, "Exhaustive and efficient constraint propagation: A graph-based learning approach and its applications". International Journal of Computer Vision (2013)

N. Flemotomos, S. Narayanan Multimo

Multimodal Clustering with Role Induced Constraints

University Counseling Center (UCC) psychotherapy sessions

- dyadic conversations
- one-to-one mapping between speakers and roles one *therapist* vs. single *client* per session
- apply both ML and CL constraints
- total speaking time: therapist (26.7h) vs. client (46.7h)

This American Life (TAL) podcast

- multi-party conversations (18 speakers on average)
- partial role information single *host* vs. multiple *non-hosts* per episode
- apply CL constraints between segments with different roles
- total speaking time: host (118.6h) vs. non-host (519.2h)

images from freepik.com by pch.vector

Extracting Role Information

- Adapt a BERT model to classify the speaker roles
- But results are not perfect! What if we impose wrong constraints?
 - $\bullet\,$ need a confidence proxy / threshold \Rightarrow use softmax values
 - trade-off decision: very confident or a lot of constraints??

Accuracy and support for the BERT-based classifier when only segments with softmax value above some threshold are taken into account.

 $\bullet\,$ For experiments: constrain about 40% of the available segments

audio-onlyunconstrained clusteringconstrained clusteringrole-based classificationUCC1.381.3110.34TAL42.2223.8663.01			,⊿cross-modal		
unconstrained clusteringconstrained clusteringrole-based classificationUCC1.381.3110.34TAL42.2223.8663.01	audio-o	ly <		> langua	age-only
UCC 1.38 1.31 10.34 TAL 42.22 23.86 63.01		unconstrained clustering	constrained clustering	role-based classification	
TAL 42.22 23.86 63.01	UCC	1.38	1.31	10.34	
	TAL	42.22	23.86	63.01	

Diarization Error Rate (%)—lower is better.

- experiments with manual segmentation and manual transcription
 - only evaluate clustering performance
- slight improvement for the dyadic UCC dataset
- substantial improvement for the multi-party TAL dataset
 - constraints helped estimate number of speakers (clusters) per episode

- Proposed a cross-modal framework to impose language-based role constraints during audio-based clustering.
- Improved diarization results for both dyadic and multi-party role-playing interactions.

- Proposed a cross-modal framework to impose language-based role constraints during audio-based clustering.
- Improved diarization results for both dyadic and multi-party role-playing interactions.

- What about other modalities?
 - audio- or video-based constraints
- Can we incorporate soft constraints?
 - confidence scores
 - role-based conversational dynamics

