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input signal
transcription

A: Thanks for coming.
B: Sure.
A: How was your day?

ASR RASR

thanks for coming sure how was your day

thanks|A for|A coming|A sure|B how|A was|A your|A day|A

𝑥"
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𝑑(𝑥", 𝑠))

𝑑(𝑥", 𝑠*)

𝑎𝑟𝑔𝑚𝑖𝑛1 𝑑 𝑥", 𝑠1

Baseline System
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extract a fixed-dimensional feature vector sj , j = 1, · · · , N for
each one of the N speakers (speaker profiles)

segment the speech signal

extract a fixed-dimensional feature vector xi for each segment

pick a distance metric d(·, ·)
∀xi select the speaker j that minimizes the distance d(xi, sj)

we ’ll be using x-vectors

Problems

Is the distance metric optimal?

Is the speaker representation appropriate for the task?

Lack of temporal information.
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Memory-Augmented Neural Networks
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Idea: Augment a neural architecture with a memory matrix.

A controller decides how to update the memory through
attention mechanisms using read and write heads.

The whole system is differentiable ⇒ can learn a task-specific
organization of the memory in a supervised manner through
gradient descent.

In our implementation: Relational Memory Core (RMC)

controller [RMC] is embedded into an LSTM

memory updates are based on a self-attention mechanism

Graves, Alex, et al. “Hybrid computing using a neural network with dynamic external memory.” Nature (2016)
Pham, Trang, et al. “Relational dynamic memory networks.” arXiv preprint (2018)
Santoro, Adam, et al. “Relational recurrent neural networks.” NeurIPS (2018)
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Proposed Architecture
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∀xi create the sequence {xi, s1, s2, · · · , sN}
pass the sequence through an RMC-based network and get the
label li ∈ {1, 2, · · · , N} corresponding to xi; this is the one that
maximizes the probability P

[
li = j|xi, s = {sj}Nj=1

]

unrolled RMC for the N + 1 elements
of the input sequence

Each element of the sequence is projected onto the
“memory space”.

The RMC learns some local distance metric, sorts the distances
and finds the sj that minimizes the distance from xi.
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Incorporating Temporal Information
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Segment length: a trade-off decision

short segments ⇒ unstable speaker representation

long segments ⇒ multiple speakers in a single segment

Solution: reasonably short segments while keeping information from
neigboring ones



Data Pre-processing
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Segmentation

oraclespk: (metric: classification accuracy)

oraclevad: (metric: Speaker Error Rate)

Subsegmentation

Each available segment is further uniformly subsegmented into 1.5sec
windows (best trade-off for baseline system).

Profile estimation

An x-vector is extracted ∀ available segment in the “oracle speakers”
scenario and a mean x-vector per speaker is calculated.

Snyder, David, et al. “X-vectors: Robust DNN embeddings for speaker recognition.”
IEEE International Conference on Acoustics, Speech and Signal Processing (2018)
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Simulated business meetings: 4 speakers per meeting

RMC captures distance
information better than LSTM

both networks fail to beat the
baseline on unseen speakers
(limited training speakers? ⇒
switch to VoxCeleb for training)

oraclespk segmentation, trained on AMI

system training set acc (%)

cos – 68.68

RMC

AMI 60.00
VoxCeleb clean 68.15
VoxCeleb reverb 70.25

VoxCeleb reverb+noise 71.90

RMC & context (±1) VoxCeleb reverb+noise 73.86

oraclespk segmentation, evaluation on unseen AMI
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Training with variable-length sequences
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VoxCeleb reverb+noise, no context VoxCeleb reverb+noise, with context

Adding context improves robustness when
training with variable-length sequences.

training seq
length 4 spks 4-6 spks 2-9 spks 4-15 spks

w/o context 71.90 71.94 70.84 69.66
with context 73.86 73.77 72.67 73.42

System accuracy on unseen AMI set when trained with different ranges of sequence lengths.
(always testing on sequences of 4 speakers)
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Results on Internal Meetings
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9 real-world business meetings (4.6h): 4-15 speakers per meeting

cos RMC RMC & context

oraclevad – SER (%)
lower is better 20.95 18.56 11.69

oraclespk – acc (%)
higher is better 70.66 72.51 79.97

System evaluation with different segmentation approaches on internal meetings.

Adding temporal context substantially improves the performance.

Can we do even better by incorporating temporal context at the decision level?
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Smoothing at the Decision Level
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Assumption: highly improbable that isolated short segments
correspond to some speaker in the middle of an utterance assigned to
another speaker
⇒ Smooth the trajectory of the predicted speaker labels via median
filtering.

unseen AMI internal meetings

System evaluation for the two datasets using different lengths of median filter for post-
processing with the oraclevad segmentation. The RMC-based system is trained on sequences
of 4-15 speakers.

A short median filter improves the performance for both datasets.

Adding temporal context to the network partially acts like a data-driven
smoothing filter.
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Conclusion

Introduced a novel architecture for continuous speaker
identification.

Showed the importance of incorporating temporal context
information both at the feature and the decision level.

Demonstrated a SER relative reduction of 39.29% for the
AMI corpus and 51.84% for the internal Microsoft
meetings, compared to the baseline when using oracle VAD
information.
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Appendix - Relational Recurrent MANNs: Controller

Updates are based on a self-attention mechanism:

assume no new observations

M̃ = softmax

(
(MW q)(MW k)T√

dk

)
MW v

incorporate a new observation x

M̃ = softmax

(
(MW q)([M ;x]W k)T√

dk

)
[M ;x]W v

Each memory attends to all the other memories to be
updated ⇒ cross-memory relations are encoded
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Let a memory matrix M with memory slots m1,m2, · · ·

queries keys

key dimensionality

values

Note that memory matrix dimensions do not change.

Santoro, Adam, et al. “Relational recurrent neural networks.” Advances in Neural Information Processing Systems (2018)
Vaswani, Ashish, et al. “Attention is all you need.” Advances in Neural Information Processing Systems (2017)



Appendix - Relational Recurrent MANNs: Recurrency

Each memory mi is embedded into an LSTM. The resulting controller
is called Relational Memory Core (RMC).

si,t = (hi,t−1,mi,t−1)

fi,t = W fxt + Ufhi,t−1 + bf

ii,t = W ixt + U ihi,t−1 + bi

oi,t = W oxt + Uohi,t−1 + bo

mi,t = σ
(
fi,t + b̃f

)
∗mi,t−1 + σ (ii,t) ∗ g(m̃i,t)

hi,t = σ (oi,t) ∗ tanh (mi,t)

si,t+1 = (hi,t,mi,t)

g(·) is some non-linear function. In practice, modelled by a
2-layer fully connected MLP.

all the weights and biases are shared across the memories mi ∀i
more memory slots 6⇒ more trainable parameters
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denotes element-wise
multiplication



Appendix - Speaker Embeddings: x-vectors
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golden standard for tasks including → speaker recognition
→ diarization
→ language identification

Architecture
Training procedure

speaker recognition on VoxCeleb 1, 2

2− 4sec long speech segments

16kHz audio

Feature normalization

LDA projection on a d-dimesnional
space (d = 200)

mean- and length-normalization to
l =
√
d

512-dim bottleneck
features

Snyder, David, et al. “X-vectors: Robust DNN embeddings for speaker recognition.”
IEEE International Conference on Acoustics, Speech and Signal Processing (2018)



Appendix - Datasets
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AMI Meeting Corpus

4 speakers per meeting

31 scenarios with 4 business meetings each (124 speakers):

62 meetings for training (35.5h) → distant mic
31 for evaluation [seen] (17.1h) → distant mic
31 for profile extraction (8.0h) → close-talk mic

6 additional meetings with unseen speakers for evaluation (4.1h)
plus 6 for profile estimation (3.8h)

subsegments every 0.75sec both for training and evaluation
(160K subsegments for training)



Appendix - Datasets
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VoxCeleb

6490 speakers with > 6 utterances

select 3 utts per speaker for profile estimation (totally 383.3h)

subsegment the rest every 10sec (840.6K training subsegments)

randomly create sequences of subsegments and speaker profiles
for training

Internal Microsoft Meetings

9 business meetings (4.6h)

4− 15 speakers per meeting

subsegments every 0.75sec

speakers already enrolled



Appendix - Experimental Setup
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Training details

Handling speaker ordering: Randomly permute the speaker
profiles in every training sequence.

When training with variable-length sequences, fix the length in
each mini-batch.

Tools

Kaldi for feature and embedding extraction

Tensorflow with Sonnet library to build the network

NIST md-eval.pl for SER estimation

Network parametrization

#memories = max #speakers + 1

memory size = 2048

MLP: 4 FC layers, 256 neurons

Evaluation metrics

oraclespk:
classification accuracy
oraclevad:
Speaker Error Rate
(collar=0.25sec)
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