
1

Optimizing Contextual Speech Recognition Using
Vector Quantization for Efficient Retrieval

Nikolaos Flemotomos†, Roger Hsiao†, Pawel Swietojanski†, Takaaki Hori, Dogan Can, Xiaodan Zhuang
Apple

Cupertino, USA
{nflemotomos, rhsiao, pswietojanski}@apple.com

Abstract—Neural contextual biasing allows speech recognition
models to leverage contextually relevant information, leading to
improved transcription accuracy. However, the biasing mecha-
nism is typically based on a cross-attention module between
the audio and a catalogue of biasing entries, which means
computational complexity can pose severe practical limitations
on the size of the biasing catalogue and consequently on accuracy
improvements. This work proposes an approximation to cross-
attention scoring based on vector quantization and enables
compute- and memory-efficient use of large biasing catalogues.
We propose to use this technique jointly with a retrieval based
contextual biasing approach. First, we use an efficient quantized
retrieval module to shortlist biasing entries by grounding them
on audio. Then we use retrieved entries for biasing. Since
the proposed approach is agnostic to the biasing method, we
investigate using full cross-attention, LLM prompting, and a
combination of the two. We show that retrieval based shortlisting
allows the system to efficiently leverage biasing catalogues of
several thousands of entries, resulting in up to 71% relative error
rate reduction in personal entity recognition. At the same time,
the proposed approximation algorithm reduces compute time by
20% and memory usage by 85-95%, for lists of up to one million
entries, when compared to standard dot-product cross-attention.

Index Terms—contextual biasing, vector quantization, speech
recognition, finite scalar quantization, retrieval

I. INTRODUCTION

END-TO-END deep learning models have revolutionized
the field of automatic speech recognition (ASR), offering

both simplicity and impressive performance [1]. However,
even large ASR models trained on vast amounts of data
still struggle to recognize rare words—in particular names
of entities [2]–[4]. One way to address this problem is to
allow models to leverage user-specific information, or context,
during inference. Such context is often referred to as the user’s
biasing catalogue, and can include contact names, commonly
used apps, media titles and creators, or relevant geo-locations.

To that end, several approaches have been proposed in the
literature, including shallow language model (LM) fusion [5],
[6] and on-the-fly LM-based rescoring [7], [8]. Such methods,
though, are often sub-optimal, because of the well-documented
tendency of end-to-end models to learn a strong internal
LM [9], [10], and the fact that the contextual model is typically
trained independently from the acoustic model (AM). Neural
contextual biasing (NCB) offers an alternative paradigm where

†equal contributions; alphabetical order

the biasing mechanism is part of the ASR model and jointly
learned with the main ASR objective [11]–[18].

NCB architectures usually rely on an additional context
encoder followed by a fusion mechanism. The context encoder
may be implemented as an LSTM [19], or more recently as
a transformer [20] module, and its role is to map a set of
tokenized biasing phrases to a set of fixed-length continuous
phrase embeddings that are integrated into ASR model predic-
tions. This integration typically takes place in a latent space
using cross-attention between audio and context encoders [11],
[15]. Another approach relies on utilizing large language
models (LLMs) for contextualization. In this case, an LLM
is used jointly with the ASR model and the biasing entries are
packed into a prompt [21] guiding LLM predictions [22]–[25].

Neural contextual biasing based on LLM prompting (thus
on self-attention) or standard cross-attention fusion comes
at the cost of increased compute and memory requirements,
which means its applicability is limited to relatively small
biasing catalogues in practical settings [11], [22], [26], [27].
On the one hand, LLMs have a fixed maximum context length,
typically in the range of a few thousand tokens [21]. Even
when maximum context length is not a blocker, LLM inference
cost can be prohibitive for long contexts [21], and LLM
reasoning performance can degrade rapidly as context length
increases [28]. On the other hand, cross-attention, generally
implemented as scaled dot-product [20], needs to be applied
between all contextual embeddings (keys) and all acoustic
encodings (queries), which can be restraining for large biasing
catalogues. These limitations have led the research community
to typically explore NCB settings where the biasing inventory
is capped to a few thousand entries [11], [29]–[32].

In this work we address the attention-driven computational
limitations of NCB employing a quantization-based, two-
stage approach. We discretize contextual embeddings using
finite scalar quantization (FSQ), a variant of vector quantiza-
tion [33] recently introduced in generative machine learning
architectures [34]. Utilizing certain properties of FSQ, we
can approximate cross-attention in a memory- and runtime-
efficient manner, and use this efficient implementation to
accurately retrieve relevant biasing entries. These entries are
then either (i) integrated with acoustic encodings through a
dot-product cross-attention biasing mechanism, or (ii) used for
LLM prompting in a delayed fusion setup [35].

Prior retrieval-based contextualization efforts typically ei-
ther employ a pre-built entity index [36]–[38], allowing for

2

efficient search and retrieval, or are integrated within the ASR
model [39], [40], allowing for frequent biasing list updates
and joint optimization, but often requiring extensive compute
and memory resources. Our proposed technique combines the
best of the two worlds: it technically belongs to the latter
category, but reduces the required memory budget through the
introduced quantization and cross-attention approximation.

The main contributions of this paper are as follows:
1) We introduce vector quantization in the field of contex-

tual speech recognition as a viable technique to discre-
tize biasing embeddings and approximate the compute-
heavy cross-attention mechanism.

2) We use our proposed technique to efficiently retrieve a
short list of entries from a large biasing catalogue.

3) We pair our retrieval approach with different biasing
implementations (full cross-attention, LLM prompting)
and decoding configurations (auto-regressive, non auto-
regressive), and demonstrate that our approach is flexible
and agnostic to the specifics of the biasing mechanism
or decoding algorithm.

Our experimental results show that our approximation algo-
rithm can lead to over 20% speed boost and 85-95% memory
usage reduction for biasing lists with at least 10k entries
(Section V-C). At the same time, our retrieval approach can
offer up to 71% relative error rate reduction for personal entity
recognition, when the retrieved entities are jointly used for
dense cross-attention and LLM prompting (Section V-B). Our
work opens up a path to scaling neural contextualization to
relatively unexplored scenarios such as biasing towards large
media catalogues, where the number of entries could be in the
hundreds of thousands or millions.

II. BACKGROUND AND RELATED WORK

A. Cross-attention based contextualization

Typical transformer-based NCB models employ a cross-
attention fusion layer where the encoded biasing phrases are
integrated with the acoustic encodings [15], [17]. Although
traditionally applied at the output of the audio encoder, some
recent works report improved accuracy by doing fusion via
one or more intermediate audio encoder layers [41]–[44].
Cross-attention fusion has also been extended to architec-
tures containing additional branches and losses to detect the
biasing phrases [32], [45], and copying mechanisms able
to directly copy the relevant biasing entries to the output
transcription [46], [47]. Other efforts have focused on building
more robust NCB systems by employing alternative sampling
strategies to construct the biasing lists during training [48],
by applying hard negative mining [49], or by injecting addi-
tional text-only information from the same distribution as the
contextual domain [18], [50].

For our own work, we build the proposed biasing sys-
tem expanding on the CTC-AED model [51], where the
biasing mechanism is implemented using cross-attention be-
tween acoustic encodings and the biasing inventory. Formally,
X ∈ RT×D denotes a sequence of acoustic embeddings,
which are the output of a conformer-based acoustic encoder,
and C ∈ R|B|×D denotes a list of contextual embeddings, as

given by a transformer-based contextual encoder. Here D is
the output dimension of the encoders, T is the length of the
audio, and B is the list of biasing phrases, with |B| denoting its
length.1 Note that the biasing list, B, always contains a special
back-off token. The role of this special token is to help the
model learn not to attend to a real biasing phrase whenever the
utterance does not contain any contextual entity. Then, vanilla
NCB computes

{Q,K,V } = {XWq,CWk,CWv} (1)

Y = softmax
(
α QK⊤)V (2)

where Q, K, V are known as queries, keys, and values respec-
tively; Q is computed by applying the linear transformation
Wq ∈ RD×D to X; K and V are computed by applying
the linear transformations Wk ∈ RD×D and Wv ∈ RD×D,
respectively, to C; and α = 1/

√
D is a normalizing factor.

The resulting biasing encodings, Y , are added to the acoustic
embeddings, X , and fed into CTC and/or AED decoders,
similarly to [41]. This process is referred to as Dense NCB
and is visually depicted in Fig. 1a.

B. LLM based contextualization

LLMs are transformer-based models with billions of param-
eters that have yielded exciting results in general-purpose
natural language understanding and generation [21]. The
speech community has been exploring ways to incorporate the
power of LLMs into ASR decoding [52]–[56], with shallow
fusion [57], n-best rescoring [58], and error correction re-
decoding [59] being some of the proposed approaches. De-
layed fusion (DF) has also been recently introduced as an
alternative [35], allowing one to use already trained LLMs and
ASR models (potentially with very different vocabularies) to
improve ASR quality without a large inference overhead.

LLM predictions can be further improved by injecting
query-specific information via prompts [21]. Generally
speaking, during prompting, a compatible model gets condi-
tioned on some number of prefix tokens, either at the attention
decoder [60] or encoder [42], [54] level. Several works have
recently tried to take advantage of the prompting mechanism
of LLMs as an alternative contextualization approach. For
instance, [24] shows improved results transcribing technical
talks when a small set of relevant keywords is included
in the prompt, while [22] follows a similar approach, but
reports a rapid degradation as the size of the biasing catalogue
gets bigger. Prompting functionality has also been used in
conjunction with retrieval mechanisms that operate at the
textual [61], phonetic [25], or acoustically encoded sentence
level [23], [38].

C. Towards efficient contextualization

Attention is a ubiquitous technology across the machine learn-
ing community [62] and significant effort has been spent on
developing efficient attention implementations. For instance,

1The acoustic features which are given as input to the acoustic encoder are
often downsampled; T represents the length of the downsampled sequence.

3

flash attention [63] introduces substantial speed gains by opti-
mizing the read and write operations between different levels
of memory, while ring attention [64] offers an elegant way
to parallelize attention computation across multiple devices
following block-wise processing. Such approaches, though,
are hardware-oriented and do not address the fundamental
memory requirements of attention computation.

In an effort to improve the computational efficiency of
the biasing mechanism, some works dynamically limit the
number of relevant phrases throughout decoding based on
prefixes that appear in the partial hypotheses, applying bias-
conditioning [11] or representing the biasing lists with prefix-
trees [6], [16], [65]. Other works have proposed to constrain
NCB to be only triggered on a subset of relevant audio
frames, something that also helps with the phenomenon of
over-biasing [26], [29]. Such approaches, despite limiting the
number of time steps for which the dot-products need to be
computed, still do not offer a scalable solution with respect to
the length of the biasing list.

One way to handle a large biasing catalogue in a flexible
manner is to follow a two-stage, retrieval-based approach.
In that line of work, the authors in [18], [39], [66]–[68]
apply a phrase-level attention to select a few candidate biasing
phrases before applying a more expensive wordpiece-level
attention [39], [68]. However, if N denotes the number of
biasing phrases and k the number of wordpieces per phrase,
this approach tries to find a trade-off between a latency of
O(N) and O(kN), thus still struggles to scale well with the
number of biasing entries, N .

Another two-stage method is introduced in [27], where
the phone sequence of the streaming ASR output is used
to filter out irrelevant entries of the biasing list. Phonemic
information is also explored in [25], where a few candidate
entities from a first pass are used to guide an LLM-based
retrieval of phonologically similar entries and prompt the
LLM during second-pass decoding. A closely related work
is dual attention [69], a technique recently applied to keyword
spotting [70]. The idea relies on having two attention modules,
a small and a large (full) one, and conditionally executing one
of them depending on triggering signals.

Retrieval approaches for ASR contextualization often op-
erate in the linguistic [36] or acoustic embedding space [23],
[37], where the embeddings act as queries to retrieve k nearest
neighbours (kNN) [36] from a pre-built entity index, optionally
using an auxiliary retrieval model [37], [40]. Recently, a joint
approach has been explored, where the retrieval step is part
of the contextual ASR model [39], [40]; in this case a form
of dot-product score is still used to shortlist biasing entries,
potentially employing an additional retrieval-oriented loss. The
kNN and attention approaches are compared in [71], for the
case of multi-modal LLMs. Index-based retrieval approaches
allow for an efficient search, but introduce the cost of building
and maintaining an up-to-date index, possibly aligned with
auxiliary models that were used for indexing and/or retrieval.
On the other side, joint model-level retrieval techniques are
end-to-end learnable and self-contained, though at the higher
cost of compute and memory requirements during inference.
Our approach belongs to the latter category, though drastically

limits the memory requirements during retrieval.

D. Vector quantization

Vector quantization (VQ) is a data compression technique [72],
where a large set of points are represented by a finite smaller
set of vectors, known as the codebook vectors. VQ codebooks
can be automatically learned through gradient descent and
used in conjunction with variational autoencoders to build
robust generative models [33]. To that end, a VQ loss is added
to the overall optimization objective, that essentially moves
the codebook elements closer to the non-quantized points,
based on their distances. Note that, instead of the learned
quantized vectors, the original points can now be equivalently
represented just by a single index in the learned codebook.

A multitude of improvements to the original VQ formulation
have been proposed in the literature [73]–[77]. The most
notable ones in the field of audio processing are residual vector
quantization (RVQ) and grouped VQ. RVQ [74] employs a
cascade of codebooks, where each one is responsible for the
discretization of the quantization error, or residual, between the
embedding and its quantized representation in the preceding
layer, in a recursive manner. That way, the original points
are represented by a set of indices (as many as the desired
RVQ depth). Note that vanilla VQ would require exponentially
larger codebooks to achieve the same quantization errors as
RVQ. Grouped VQ [75] also aims at decreasing the required
number of codebooks and codebook vectors, by splitting the
original embeddings into groups and employing separately
trained VQs to quantize each group.

Despite the remarkable results achieved with VQ and the
aforementioned variants, training such discrete latent repre-
sentations remains challenging. Codebook collapse, the model
learning to only use a very small subset of the available
codebook vectors, is a well-documented problem. Several
solutions have been proposed, including alternative distance
metrics, carefully designed initialization and learning rate
updates, embedding estimation through exponential moving
averages, and auxiliary losses [73], [78]–[80].

In an effort to simplify the original VQ formulation, thus
overcoming the associated challenges, the authors in [34]
introduced finite scalar quantization (FSQ) as an alternative.
In FSQ, a d-dimensional vector (where d is relatively small,
with the original embedding typically being projected onto a
lower dimension) is quantized by mapping each one of its d
values to an integer. To achieve that, the continuous values are
first bounded through a non-linear function, and then rounded.
Since there is a pre-defined set of levels L = [l1, l2, · · · , ld],
and the i-th dimension can only take one of li different values
(e.g., {−1, 0, 1} for li = 3), the (implicit) codebook is of size∏d

i=1 li. The idea of dropping explicitly trained codebooks is
also explored in [81], where lookup-free quantization (LFQ)
is introduced. LFQ operates similarly to a two-level FSQ, but
training includes additional regularizations.

III. PROPOSED ARCHITECTURE AND FORMULATION

Although the Dense NCB formulation introduced in Sec-
tion II-A stays relatively efficient for smaller biasing lists (say

4

acoustic	
encoder

context			
encoder

Xattention	
scoring
K V Q

decoders	
(CTC	/	AED	/	both)

+

biasing	
catalogue

audio

(a)

acoustic	
encoder

context			
encoder

Xattention	
scoring
K V Q

quantized	
Xattention	
retrieval
K Q

decoders	
(CTC	/	AED	/	both)

+

biasing	
catalogue

audio

(b)

acoustic	
encoder

context			
encoder

quantized	
Xattention	
retrieval
K Q

decoders	
(CTC	/	AED	/	both)LLM	fusion

prompt	
generation

biasing	
catalogue

audio

(c)

acoustic	
encoder

context			
encoder

decoders	
(CTC	/	AED	/	both)

Xattention	
scoring
K V Q

quantized	
Xattention	
retrieval
K Q

LLM	fusion

prompt	
generation

+

biasing	
catalogue

audio

(d)

Fig. 1. Four considered biasing approaches: (a) vanilla contextual biasing referred to as Dense NCB; (b) Retrieval NCB, where a quantization module is
used for large scale retrieval followed by TopK dense cross-attention processing; (c) LLM Prompting, where retrieved entries are packed into the prompt;
(d) combination of Retrieval NCB and LLM Prompting. Note that in an efficient implementation, the context encoder needs to be run exactly once for each
biasing entry and the encodings get cached and reused across multiple queries.

up to couple of thousand entries), the dot-product computation
of Eq. (2) could consume much compute and memory, so it
could become a bottleneck for larger catalogues. More pre-
cisely, we are computing T · |B| D-dimensional dot-products.
While both long audio (i.e., large T) and large inventory of
biasing phrases (i.e., large |B|) could cause problems, the audio
is often less of a concern since it can be chunked to enable
online recognition, or the biasing can be applied only to a
subset of audio frames using gating [26]. The ability to handle
a large inventory, B, however, cannot be easily dealt with.

Here we propose a two-stage attention module, where the
first efficient implementation (details in Section IV) is based
on vector quantization and is used for retrieving biasing entries
grounded on the audio queries. The full attention is still used
for biasing only with those relevant entries, as depicted in
Fig. 1b. Alternatively, the retrieved biasing phrases can be
used for prompting an LLM that contextualizes the final ASR
predictions through delayed fusion, as shown in Fig. 1c. The
two approaches can also be combined, as in Fig. 1d.

Retrieval operates at the frame level, selecting the top entries
from the dot-product between the queries and the keys. Such
a frame-synchronous mode allows—depending on the target
decoder—for both streaming and non-streaming applications.2

This differentiates our systems from approaches operating in
the hypothesis space, retrieving additional contextual signals
for second-pass decoding only [82], or systems assuming
sentence-level representation is available for retrieval [23].
While the ideas presented here could in principle be applied
for sentence-level retrieval as well (e.g., by pooling all frame
encodings into a sentence-level embedding and then retrieving
the most relevant entries), a detailed comparison between
frame-level and utterance-level retrieval is out of the scope
of the current paper.

Note that during the retrieval stage we do not need to
compute the values, V , nor to calculate the softmax function

2While for our experiments we stack all the frame-level retrieved entries
into a single set which we employ during the second-stage biasing, a system
deployed in a streaming scenario could do so in a chunk-wise fashion.

in Eq. (2). While this further reduces the overall computational
cost that would be otherwise required (in case of full cross-
attention between audio queries and all the entries in the
biasing list), the key novelty of our approach comes from
the way we use vector quantization, and specifically FSQ, as
detailed in the remainder of this section, and in Section IV.

In this work we apply FSQ to quantize the contextual
embeddings of the NCB framework. In more detail, assume
a contextual phrase with corresponding contextual embedding
c ∈ RD, as output from the NCB contextual encoder. Using
FSQ with levels L =

[
l1, l2, . . . , l|L|

]
, we get the quantized

representation, z = FSQ(c). However, depending on the exact
FSQ setting, the resulting codebook capacity might be very
limited. For instance, for L = [8, 5, 5, 5], the implicit codebook
size is equal to

∏
i li = 1000, whereas we want to represent

hundreds of thousands or millions of potential biasing phrases.
To increase the capacity of the quantizer, given a specific
level configuration, L, we apply grouping and we quantize
separately each one of the groups. The initial vector, c,
is split into G groups and we quantize each one of the
cg ∈ R(D/G) sub-vectors. In our implementation, we use the
same level configuration, L, for the quantizers applied to all
the sub-groups (for all g ∈ {1, 2, . . . , G}). We get the final
representation, z, as follows:

c̃g = Ag
inc

g + bgin =
[
c̃g1, c̃

g
2, . . . , c̃

g
|L|

]
∀g (3)

eg =
[
round[f1(c̃

g
1)], . . . , round[f|L|(c̃

g
|L|)]

]
∀g (4)

ng = normalize (eg) ∀g (5)
zg = Ag

outn
g + bgout ∀g (6)

z =
[
z1⊤; z2⊤; . . . ; zG⊤]⊤

(7)

where [Ag
in; b

g
in] is the input affine transformation that projects

the
(
D/G

)
-dimensional vector cg onto an |L|-dimensional

space; [Ag
out; b

g
out] is the output affine transformation that

projects the |L|-dimensional vector ng back onto the(
D/G

)
-dimensional space; normalize(·) is a function that

5

maps the integer elements of eg to [−1, 1]; fi(·) is a bounding
non-linear function such that each element egi of eg can take
one of li different integer values. We use the function proposed
in [34], fi(x) = ⌊li/2⌋ tanh (x). The embedding, c, can be
now represented by the G indices to the implicit codebooks.

During training, we load the parameters of a pre-trained,
non-quantized NCB model and we only train the addi-
tional FSQ parameters (i.e., the projections [Ag

in; b
g
in] and

[Ag
out; b

g
out] ∀g), keeping the rest of the weights frozen.3

For back-propagation to work through the non-differentiable
rounding operation, we copy gradients via straight-through
estimation (STE) [83].4 Once the FSQ parameters have been
trained, all the biasing phrases can be represented via the
implicit FSQ codebooks, without the need to re-train any
parameters based on the biasing catalogues at inference. Thus,
the same model, without further tuning, can be used for various
users, associated to different biasing lists, or to the same user
after updating their own relevant biasing list (e.g., deleting or
adding new contacts).

As already mentioned, each element egi of eg can take one
of li different integer values for all the groups g; by extension,
each element ng

i of ng can also take one of li different values.
Denoting as U = {uj}j=1..|U| the set of all possible values of
ng
i ∀i∀g, we can easily see that, without loss of generality

for the chosen bounding functions, the cardinality of the set
is |U| ≤

∑|L|
i=1 li.

5 With that in mind, we can represent each
contextual embedding, c, by G · |L| values from the set U.

IV. VQ BASED ALGORITHM FOR CROSS ATTENTION

A. Efficient dot-product estimation

As explained in Section III, we propose to apply FSQ to the
contextual embeddings of the employed NCB architecture.
This changes the structure of the dot-product appearing in
Eq. (2). For simplicity, the formulation below assumes the
number of groups is one, G = 1, however, we found that
grouping is important when it comes to the representational
power of FSQ.6 Using a similar notation as in Eq. (6)—
dropping the grouping indices—the dot-product between a
query q from Q and a key k from K, can be computed by

q⊤k ≃ q⊤Wkz

= q⊤ [Wk(Aoutn+ bout)]

= q⊤ [An+ b]

= q⊤
|L|∑
i=1

aini + q⊤b

=

|L|∑
i=1

q⊤aini + q⊤b (8)

3Initial experimentation showed no improvements by training or fine-tuning
all the network parameters jointly with the quantizer.

4The rounding operation of a tensor, x, can be implemented in PyTorch
with STE as x + (torch.round(x) - x).detach().

5We use the inequality sign to allow for the (common) scenario where the
same values are used across multiple levels.

6In our implementation, for G > 1, we restricted Wk to be a block-
diagonal matrix with G blocks, each one in R(D/G)×(D/G).

where z is the quantized representation of the contextual
embedding corresponding to k; A and b are equal to WkAout
and Wkbout, respectively; ai is the i-th column of A,
i.e., A = [a1,a2, . . . ,a|L|]; ni is the i-th element of the
|L|-dimensional FSQ vector representation n. By examining
the above equations closely, we notice:

1) A ∈ RD×|L| and |L| is relatively small,
2) ni can take li different values from U,
3) q⊤b is not needed for retrieval.
Properties 1 and 2 have a big impact on computation

and memory consumption because we no longer compute
the dot-product matrix QK⊤ between the queries and a big
inventory of keys as in Eq. (2). Remember that QK⊤ is a
matrix in RT×|B| and its estimation requires computing T · |B|
D-dimensional dot-products between T different queries (q)
and |B| different keys (k). Instead of those |B| different
vectors, due to property 1, we now only have |L| vectors
({ai}i=1..|L| in the notation of Eq. (8)), where |L| is often in
the range 4 – 6. Property 2 means there is limited variation for
the values of ni, since |U| ≤

∑|L|
i=1 li.

7 Combining properties 1
and 2 allows us to efficiently compute dot-products between
the queries in Q and all possible vectors from An. Since we
have |L| columns in A and each element in n can take one of
|U| different values, we get at most |L| · |U| D-dimensional
vectors from An. This would greatly reduce the memory
consumption since |B| ≫ |L| · |U| for typical applications.

Property 3 implies we could ignore q⊤b altogether since
for retrieval this term only adds a different constant to each
time step and does not affect the TopK selection that takes
place at the frame level. Therefore, we pre-compute the score
matrix San ∈ RD×(|L|·|U|):

San =
[
a1u1,a1u2, . . . ,a|L|u|U|

]
= [. . . ,aiuj , . . .] (9)

for all i ∈ {1, 2, . . . , |L|} and j ∈ {1, 2, . . . , |U|}. To estimate
the dot-product with a query, q, we can compute

sqan = S⊤
anq (10)

where sqan ∈ R|L|·|U|. Then, we can select the scores based
on the |L| indices for a given biasing phrase, and sum them
to get the desired dot-product between q and Wkz, which
approximates q⊤k.

In sum, we use Eq. (10) to compute all possible dot-
products between queries (acoustic encoder frames) and the
keys (quantized contextual embeddings after FSQ). Then, we
perform index selection and sum reduction to approximate
QK⊤ in Eq. (2). Finally, for each time frame we can retrieve
the phrases with the highest dot-product scores. Algorithm 1
describes this process in pseudo-code, where E denotes the
matrix that stores all the integer FSQ values corresponding to
all the biasing phrases (the results of Eq. (4) for G = 1). Note
that, once we have pre-calculated the score matrix San, in
practice we can run the algorithm in batches, with respect to
both the time dimension (for t = 1 to T) and the biasing
list (for j = 1 to |B|).

7For the settings used in our experiments, L = [8, 5, 5, 5] or
L = [7, 5, 5, 5, 5], so that |U| ≤ 27.

6

Algorithm 1 FSQ-based dot-product computation and retrieval
Require: A←WkAout
Require: L← FSQ level information
Require: U← all possible values in FSQ codebooks
Require: San ← [a1u1, . . . ,a|L|u|U|]

function TOPK(X: Mat[T ,D], E: Mat[|B|,|L|], K: int)
Q←XWq

R← Mat[T ,K]
for t = 1 to T do

stqan ← Q[t, :]⊤S⊤
an

C ← Zeros(|B|)
for j = 1 to |B| do

for l = 1 to |L| do
ejl ← E[j, l]
C[j]← C[j] + stqan[l · |U|+ ejl]

end for
end for
R[t]← the indices of top K values from C

end for
return R

end function

Since we are interested in the retrieval scenario, in this
section we focused on the quantization of the keys and the
efficient dot-product estimation between keys and queries. Of
course, since FSQ is applied on the contextual embeddings,
and both keys and values are linear projections of those same
embeddings, quantization of the values is also possible for a
full quantized cross-attention.

B. Asymptotic runtime and space complexity

Table I summarizes the time and space complexity of the direct
dot-product and our proposed approaches, when the size of the
biasing list is the dominant factor, i.e., |B| ≫ T, |U|, |L|, D,G.
The space complexity analysis would need to consider storage
of queries, keys, and the output. The queries are the acoustic
encodings and require O(TD) space, which can be ignored
when |B| is dominant. The output would require O(T |B|)
space, if we wanted to store all the dot-products between the
acoustic encodings and the biasing phrases. This is required in
case of full cross-attention, in order to calculate the softmax.
However, in case of retrieval, we can calculate and store dot-
products in batches and only keep the TopK at every step, so
we do not consider this for our analysis.

TABLE I
TIME & SPACE COMPLEXITY FOR DOT-PRODUCT COMPUTATION BETWEEN

QUERIES AND KEYS WITH DIRECT AND PROPOSED APPROACHES.

Algorithm Runtime Space

Direct dot-product O(T |B|D) O(|B|D)
Quantized dot-product O(T |B||L|G) O(|B||L|G)

The size of biasing list, |B|, is assumed as dominant factor.

Our proposed algorithm reduces memory consumption for
the keys because we no longer store a D-dimensional vector
for every biasing phrase. Instead, each phrase is represented

by |L| ·G indices, so the space to store the keys becomes
O(|B||L|G). We use these indices to retrieve the scores from
the matrix San in Eq. (9), which requires O(|L||U|D) space,
and can be ignored when |B| is dominant.8 As a result, our
proposed algorithm could save memory when D > |L| ·G.

In practice, memory savings will be even more pronounced
since we only need 2 – 3 bits to represent each of the |L|
elements in the integer FSQ representation eg ∀g (Eq. (4)).
Therefore, it is possible to represent a biasing phrase with
G 16-bit integers, i.e., G × 2 bytes. However, for the vanilla
dot-product approach, we would still need D floating point
numbers for each biasing phrase, which is significantly larger
even with low precision representation. This advantage of our
proposed algorithm comes from the indexing structure that
allows for a more compact representation.

To estimate the runtime complexity of our proposed algo-
rithm, note that the score matrix San can be pre-computed
before inference starts. Therefore, we only need to consider the
dot-product computation between the queries and San, which
takes O(T |L||U|D) time. Then, the index selection part would
take O(T |B||L|G) time (see Algorithm 1 for G = 1), which
is the dominant factor when |B| is dominant. Therefore, the
runtime complexity of our proposed algorithm would be lower
when D > |L| ·G, similarly to space complexity.

V. EXPERIMENTS

We carry out the experiments on a large-scale in-house dataset
consisting of examples from two tasks; dictation and assistant.
Following [84], the model parameters are first estimated on
semi-supervised data for a total of 500k updates, and then
the contextual model is fine-tuned for another 100k updates
on supervised data. In both stages, gradients are accumulated
over 6,144 examples. We use SyncSGD + Adam [85] for
distributed optimization, with exponentially decaying learning
rates. The semi-supervised portion of the data consists of
around 600,000 hours of automatically transcribed audio,
while the supervised portion comprises about 50,000 hours
of human-graded English queries; all data are anonymized at
the user level.9 For the quantized models, we freeze all the
parameters and we only train the quantizers for another 100k
updates. When training contextual models, similarly to [49],
we sample 3 biasing phrases for each utterance (one positive
and two distractors), then we share contextual phrases across
all other utterances within a batch.

The backbone of our system is a CTC-AED model [51].
The acoustic encoder is a network with a Conv2D module,
resulting in 6-fold downsampling of the input, followed by
12 conformer blocks. The AED decoder is a 3-block bi-
directional transformer.10 Both the encoder and decoder blocks
have a hidden dimension of 2,048 and employ an 8-head
self-attention. The context encoder comprises 3 transformer

8Note that the total space needed for the score matrix is not affected by the
number of groups, G, since each group operates on a sub-vector in R(D/G).

9Users are assigned code IDs, and it is not possible to map a code ID back
to a real user.

10In practice, this is implemented with 3 blocks of forward transformers
and 3 blocks of backward transformers. While all 6 blocks are used during
training, the backward transformers are disabled during inference.

7

blocks with a hidden dimension of 512 and an 8-head self-
attention. The biasing module is based on single-head cross-
attention, since initial experimentation showed no benefits
by employing multi-head attention. The input audio is en-
hanced by spectral augmentation [86] and is represented by
80-dimensional logmel features, extracted every 10msec. The
text representation is based on a SentencePiece tokenizer [87]
with a vocabulary size of 6k, trained on the transcripts of the
supervised portion of our data. For LM-based experimentation,
we employ an internal transformer-based neural network lan-
guage model (NNLM) using the same 6k tokenizer, trained
on the same transcribed data, as well as the public LLM
OpenLLaMA 3B v2 [88], [89] with a vocabulary size of 32k.

Models are evaluated using an in-house test set containing
42 hours of data with queries targeted to a smart voice
assistant. Around 50% of the test set comprises contextual
queries containing contact, app, and media names, anonymized
at the user level. The remainder portion of test data consists
of examples that are generic in nature and are not expected
to benefit from auxiliary biasing information. We report ASR
results using two metrics, word error rate (WER [%]) for
quantifying an average system performance, and named entity
error rate (NEER [%]) to better capture contextualization
performance. We further distinguish between NEER on contact
names—that comprise the biggest portion of the biasing cata-
logues in our test set—and on all other (non-contact) entities.
Note that NEER is a binary metric getting a score of 0 only
when ASR correctly predicts the complete entity filler and
100 otherwise. While non-binary metrics, such as the biased
word error rate (B-WER), have been also proposed in the
literature [65], NEER is more appropriate for our use case
where it is often imperative that the voice assistant perfectly
recognize a named entity (e.g., when the user tries to make a
call).

To showcase the flexibility of our systems with respect to
the decoder applied, we perform experiments in both non
auto-regressive and auto-regressive fashion. For the former, we
apply CTC beam search followed by attention rescoring [90],
the latter relies on joint CTC-attention decoding [91]. Both
cases use a beam size of 10 and a relative CTC weight of 0.3.

A. Retrieval performance evaluation

In order to use the (quantized) NCB model to ground biasing
catalogues on audio, we need to confirm that the attention head
of the contextual cross-attention attends indeed to the expected
entries. To do so, we feed to the NCB model an utterance
with T frames that contains the contextual phrase p̂ in the
reference text, together with the corresponding biasing list B
(with p̂ ∈ B). At every frame t of the utterance we take the
attention scores and we get the K phrases from the biasing list
with the TopK scores (Fig. 1). Let’s denote this set of phrases
as Pt

K = {pti}i={1..K}. Note that we treat the back-off token
as an empty phrase, so if the Top1 for frame t′ is the back-
off, then Pt′

1 = ∅. We then combine all the extracted phrases,
for all the frames, into a set SK = P1

K ∪ P2
K ∪ · · · ∪ PT

K , and
we calculate the success rate (or recall) as the rate for which
p̂ ∈ SK across our dataset.

We evaluate the retrieval capabilities of the models on a
random subset of 1.4k examples drawn from the test set,
all of which contain some contextual phrase (contact, app)
anonymized at the user level, stored in the user’s biasing list.
Each example is uttered by a different speaker (for a total
of 1.4k unique speakers), each one associated with their own
biasing list. For this experiment we limit the maximum length
of biasing catalogues to max |B| = 5k, randomly discarding
biasing phrases if the initial user’s catalogue is larger. We
report the success rates for various FSQ configurations11 in
Fig. 2, while in Fig. 3 we report the number of retrieved
phrases per utterance (i.e., the cardinality of the set SK per
our previous notation).

 5

su
cc
es
s	
ra
te
	[
%
]

0

25

50

75

100 99.198.595.6

71.9

15.9

3.9

98.397.7
93.9

61.9

10.8

2.0

91.289.9
85.8

39.1

3.10.6

Top1	
w/o	VQ:	91.8

Top5	
w/o	VQ:	98.3

Top10	
w/o	VQ:	99.3

su
cc
es
s	
ra
te
	[
%
]

0

25

50

75

100

Number	of	groups	G

1 2 4 8 16 32

98.998.998.3
94.2

29.6

5.5

98.998.196.6
90.6

22.2

3.3

91.490.787.9

74.7

8.8
0.9

L = [8, 5, 5, 5]

L = [7, 5, 5, 5, 5]

1

Fig. 2. Retrieval success rates for Top1, Top5, and Top10, for various FSQ
settings. The baseline numbers (w/o quantization) are given in the legend.

 8

#r
et
ri
ev
ed
	p
hr
as
es

0

35

70

105

140

93.591.694.3

81.0

59.7

14.5

51.551.254.7
47.7

35.0

8.1 4.97.912.613.68.9
1.9

Top1	
w/o	VQ:	3.5

Top5	
w/o	VQ:	49.5

Top10	
w/o	VQ:	88.4

#r
et
ri
ev
ed
	p
hr
as
es

0

35

70

105

140

Number	of	groups	G

1 2 4 8 16 32

93.092.891.588.4

46.4

28.4

50.751.451.553.7

27.7
15.7

4.96.56.3
15.4

7.73.6

L = [8, 5, 5, 5]

L = [7, 5, 5, 5, 5]

1

Fig. 3. Average number of phrases retrieved per utterance for Top1, Top5,
and Top10 retrieval, for various FSQ settings. The baseline (w/o quantization)
numbers are given in the legend. The error bars represent one standard
deviation from the averages (as estimated on the 1.4k test utterances).

Success rates for the quantized models degrade a lot for
G < 8, but appear to be very close to the non-quantized

11We pick two representative and recommended [34] level configurations
L that approximately match codebook sizes equal to 210 and 212, and we
investigate the effect of grouping (G) in the retrieval performance. Both
parameters L and G affect the overall capacity of our FSQ setup (see
Section III).

8

baselines for G ≥ 16. This shows that we can effectively use
the quantization-based system to retrieve a small subset of
phrases without hurting ASR accuracy (see also experiments
of Section V-B). For the subsequent experiments, we mainly
focus on the model with G = 16, L = [8, 5, 5, 5], as a good
trade-off between retrieval accuracy and compute/memory
gains based on Algorithm 1. The entire retrieved biasing list
per utterance for this model contains on average 7.9 phrases
(max=35) for Top1 retrieval, 51.2 phrases (max=162) for Top5
retrieval, and 91.6 phrases (max=298) for Top10 retrieval.

Since we are introducing a VQ-based approach, it is impor-
tant to examine potential collisions. A collision happens when
different biasing phrases get the same quantization indices,
meaning that the model can no longer distinguish them. Here
we estimate the collision rate as

collision =
#unique phrases−#unique indices

#unique phrases
(11)

for all the phrases across all the biasing catalogues in our
set. Note that in any case we include exactly K phrases in
the TopK retrieved list (even when multiple biasing phrases
collide). As we can see in Fig. 4, the collision rate is negatively
correlated with the retrieval success rate, but is consistently
low for G ≥ 8. After inspecting some collisions in those cases,
most of them occur between pairs of phrases with different
word ordering (e.g., Vector Quant vs. Quant Vector), different
punctuation (e.g., Vector Quant vs. Vector Quant.), or slightly
different spelling (e.g., Vector vs. Vecctor). The very high
collision rates and, hence, the low success rates for G = 1 are
not surprising. The subset under examination contains about
700k unique biasing phrases, whereas the maximum capacity
of the quantizer for G = 1 is equal to

∏|L|
i=1 li, which is only

1,000 for L = [8, 5, 5, 5] and 4,375 for L = [7, 5, 5, 5, 5].

0

25

50

75

100

To
p1

 su
cc

ess
 ra

te
[%

]

0.6 3.1

39.1

85.8 89.9 91.2

1 2 4 8 16 32
Number of groups G

0

25

50

75

100

To
p1

 su
cc

ess
 ra

te
[%

]

0.9
8.8

74.7
87.9 90.7 91.4

0

25

50

75

100

co
llis

ion
 ra

te
[%

]

99.99

83.97

2.1 0.6 0.58 0.58

0

25

50

75

100

co
llis

ion
 ra

te
[%

]

99.87

66.56

0.62 0.6 0.58 0.57

L = [8, 5, 5, 5]

L = [7, 5, 5, 5, 5]

1

Fig. 4. Collision vs. Top1 retrieval success rate, for various FSQ settings.

B. ASR performance evaluation

We start our ASR evaluation with Table II, where the first
block shows baseline results for a few NCB-enabled models
depicted in Fig. 1a. In particular, we evaluate NCB consuming
different numbers of biasing phrases, with max |B| = 0
denoting a non-biased baseline. Dense NCB is the system

that does biasing by computing full scaled dot-product cross-
attention scores. When ingesting a random selection of up
to 1k or 5k biasing entries,12 we observe an overall 21%
relative WER reduction and between 50-55% relative contact
NEER reduction. In this work we assume max |B| = 5k as
a reasonable practical upper limit on the size of the biasing
inventory for edge deployment, similarly to many other works
using similar techniques [12], [16], [18]. However, the size of
biasing catalogue may vary between users and applications in
substantial ways, from a few hundred to hundreds of thousands
of entries or more (e.g., when biasing to non-personal entities
such as media titles), highlighting the challenge of scaling
Dense NCB to uncapped biasing catalogues.

TABLE II
WER AND NEER METRICS FOR THE BASELINE AND NCB-ENABLED

MODELS, AND THEIR EFFICIENT RETRIEVAL ORIENTED SETUPS.

System max |B| WER[%] NEER [%]
Contact Other

Dense NCB 0 7.0 39.4 15.8
Dense NCB 1k 5.6 19.7 15.4
Dense NCB 5k 5.5 17.7 15.4

(I) Retrieval NCB 5k 5.5 17.7 15.4
(II) Retrieval NCB 5k 5.5 17.7 15.4

System (I) based on G = 16, L = [7, 5, 5, 5, 5] FSQ variant.
System (II) based on G = 16, L = [8, 5, 5, 5] FSQ variant.
max |B| denotes the maximum number of biasing phrases used.
Results for TopK = 5 (in case of Retrieval NCB), w/ CTC + attention

rescoring decoder.

As shown in the previous section, quantized representation
offers close-to-baseline retrieval performance for TopK ≥ 1,
thus we propose to use quantization for large-scale retrieval,
followed by dense biasing only for the acoustically grounded
entries. This system is depicted in Fig. 1b and we will refer
to this operation mode as Retrieval NCB. The reason we
do not use, here, quantized cross-attention in a standalone,
single-stage manner is that, in this case, we observed a
higher confusion among the phrases with high attention scores
that led to degraded accuracy, when compared to full cross-
attention. We further explore this issue in Appendix A. Results
for Retrieval NCB are reported in the second block of Table II,
where we can observe that the retrieval-augmented systems
match the performance of Dense NCB. At the same time,
this approach offers much better scaling characteristics with
respect to the size of the biasing catalogues, a property that
we investigate in the remainder of this section.

Since the proposed technique allows us to increase the
size of the biasing inventory with minimal memory footprint
(see also Section V-C), Table III reports results for the case
where we consume all the available contextual information.
Note that from now on we use the Retrieval NCB system (II)
from Table II. The first two rows repeat the accuracy results
when the maximum allowed number of biasing entries is set
to 1,000 and 5,000 random entries, respectively. We can see
that although this change (from 1k to 5k entries) has small
impact on the overall accuracy, it is important for named

12This means that if the size of the biasing catalogue is larger than 5k (1k),
we trim it to 5k (1k) randomly selected phrases.

9

entity regions, as reflected by the contact NEER scores. This
suggests that a biasing approach that puts constraints on the
allowed size of the biasing catalogue is sub-optimal. Running
decodes with all the available biasing information (maxing
out at around 22.6k for the largest catalogues in the test set)
does not seem to lead to further improvements, on average,
over the trimmed configuration, likely due to the fact that few
catalogues are affected by the 5k size threshold.

TABLE III
WER AND NEER METRICS OF RETRIEVAL NCB FOR LIMITED, FULL,

AND ENUMERATED BIASING PHRASE LISTS.

Biasing Catalogue max |B| WER[%] NEER [%]
Contact Other

Limited 1k 5.6 19.7 15.4
Limited 5k 5.5 17.7 15.4

Full 22.6k 5.5 17.6 15.5
+ Enum. All 43.5k 5.5 16.2 15.8
+ Enum. Contacts 42.9k 5.4 15.9 15.7

Results for TopK = 5, w/ CTC + attention rescoring decoder.

We then experiment with enumerating the biasing phrases
into word- and word-order-level combinations. For example,
in a phone-book like scenario we assume that the user may
utter arbitrary combinations of first and last names.13 Such
an enumeration strategy doubles the maximum inventory to
around 43,000 biasing entries, but reduces NEER on contacts
by 9.7% relative when compared to the non-enumerated vari-
ant. Our efficient retrieval algorithm allows us to consume
fully enumerated catalogues easily, without the need to cap
them due to algorithmic complexity. Applying enumerations
on all the biasing entries did not bring further gains, which
was expected, since for entities such as aggregated song titles,
app names, etc., enumerations are less important.

Table IV shows results for different TopK retrieval settings.
We observe that most of the gain is realized for K = 1, and
contact NEER saturates after K = 5. The latter will be our
default setting in the remainder of this work.

TABLE IV
WER AND NEER METRICS OF RETRIEVAL NCB FOR VARIOUS TOPK

SETTINGS.

TopK WER[%] NEER [%]
Contact Other

0 7.0 39.4 15.8
1 5.5 18.3 15.3
2 5.5 17.8 15.4
5 5.5 17.6 15.5

10 5.5 17.6 15.4
20 5.5 17.6 15.4

Using the Full biasing info system from Table III.
TopK = 0 essentially means that NCB is disabled.

Our proposed Retrieval NCB approach is agnostic to the
exact decoding mechanism applied. While results in the pre-
vious tables were based on CTC decoding with attention
rescoring, the Retrieval NCB rows of Table V report results

13A single Joe Foe phrase becomes a set {Joe Foe, Joe, Foe, Foe Joe}.

with auto-regressive joint CTC-attention decoding [91].14 We
can see that Retrieval NCB works well in this configuration as
well, offering an additional 16.4% relative reduction in contact
NEER, or 14.8% relative reduction in general WER, when
compared to the attention rescoring setup (Table III).

TABLE V
WER AND NEER METRICS FOR SYSTEMS WITH LLM FUSION AND

PROMPTING AFTER JOINT CTC-ATTENTION DECODING.

System max |B| WER[%] NEER [%]
Contact Other

Retrieval NCB 0 6.3 38.2 12.9
+ SF NNLM 0 6.4 38.2 12.6
+ DF OpenLLaMAv2 0 6.4 37.8 11.3
++ prompt 42.9k∗ 5.9 31.8 11.0

Retrieval NCB 42.9k 4.6 13.3 12.5
+ SF NNLM 42.9k 4.7 13.6 12.1
+ DF OpenLLaMAv2 42.9k 4.7 13.3 11.1
++ prompt 42.9k 4.5 11.0 11.1

∗used retrieved entries only via LLM prompting path for biasing.
Using the Enum. Contacts system from Table III.

Till now, we have considered retrieval and biasing using
different configurations of the cross-attention module, as in
Fig. 1a and 1b; however, shortlisted phrases can be used to
contextualize the model with an arbitrary biasing machinery.
One recent example relies on LLMs equipped with prompting
functionality, with the biasing phrases given as a prompt to
a pre-trained model [22], [23]. For our experimentation we
pack the retrieved phrases into a prompt15 and use the LLM
in a delayed fusion mode [35] with the hypotheses emitted by
CTC-attention decoders (Fig. 1c). Delayed fusion is a variant
of shallow fusion that computes and applies LM scores for
partial ASR hypotheses, but after pruning and re-tokenization
of the hypotheses. This reduces the number of LLM inference
calls and allows us to use an arbitrary LLM, potentially
with a tokenization different than the one employed by our
main ASR system. This means we do not need to re-train
our ASR system to match the—typically—much larger LLM
vocabulary, something that not only reduces compute cost, but
also maintains the robustness of the ASR model [35], [92].

The DF OpenLLaMAv2 rows of Table V show results with
LLM delayed fusion, but without prompting. Even though
there is no reduction in general WER, we can see an im-
provement in entity recognition. Using a robust LM especially
helps with non-personal entity regions, as expected, with up to
12.4% relative NEER-other reduction. For completeness, we
also report results for decodes with shallow token-level fusion
with a relatively small in-domain LM, referred to as SF NNLM.
This model is not able to be conditioned on the prompt, but
helps to quantify the overall impact of LLM fusion in generic
(non-prompted) mode.

The final row of the first block of the table shows the
performance of the retrieval setup, when applied to shortlist
biasing phrases that are packed to prompt the LLM (Fig. 1c).

14We still use the same streaming conformer acoustic encoder, but the
attention module has access to the global set of audio encodings.

15The prompt was: Here is a comma separated list of acoustically grounded
entities you may use when predicting next relevant word: ...

10

We observe that when the LLM is kept frozen and independent
from the AM, the prompting performance remains somewhat
limited with respect to contact NEER, with the relative im-
provement over baseline only being 15.8% (for comparison,
Retrieval NCB got over 65% relative contact NEER reduction).
Note that here we use the pre-trained weights of the LLM,
without further adaptation to our use case nor allowing the
LLM to access acoustic embeddings via adapter mechanism.
This can perhaps explain somewhat limited gains, but LLM
adaptation is out of the scope of this work.16

Finally, the last row of the second block of the table shows a
combined variant of retrieval-based NCB where the shortlisted
biasing phrases are used both as an input to a dense cross-
attention module and as an LLM prompt (Fig. 1d). This
gives us further 17.3% relative contact NEER reduction when
compared to the strongest Retrieval NCB result, or about
71% relative when compared to the non-biased model (w/ DF
OpenLLaMAv2 and max |B| = 0). It is interesting to observe
a greater contextualization ability of LLM prompting when
combined with Retrieval NCB than in a standalone LLM
prompting manner (relative contact NEER reduction is 17.3%
and 15.8%, respectively). This shows that for LLM fusion / re-
scoring like approaches it is crucial to have high-quality biased
candidate hypotheses from AM that are more amendable to
LLM contextual rewrite. This also demonstrates that LLM
can be leveraged effectively without acoustic encodings, and
thus may potentially allow for effective conditional LLM
fusion, where LLM is lazily queried for selected subsets of
challenging traffic. We leave that direction for future work.

C. Compute performance evaluation

Fig. 5 shows the runtime evaluation of the baseline and
proposed approaches for dot-product estimation. The runtime
was measured with an Intel Xeon Gold 5128 processor clocked
at 2.3GHz running on a single thread. In this analysis, we
measured the time for computing cross-attention up to the
point of (and including) the dot-product between queries and
keys during inference. Any computation that can be prepared
offline, such as the linear transformation of the keys in Eq. (1),
is not accounted for. For the baseline approach, this includes
the query preparation and the dot-product between queries
and keys in Eq. (1) – (2). For the proposed approach, this
includes the query preparation, the index selection, and the
sum reduction as shown in Algorithm 1.

The results showcase that the proposed algorithm is faster
than the baseline approach and the gains are bigger as the num-
ber of biasing phrases increases, which is expected since the
time complexity is proportional to |B| (Section IV-B). When
the biasing list has over 10k entries, all FSQ configurations
achieve at least 20% reduction in runtime. For the largest
biasing lists, the runtime of our proposed algorithm with the
fastest FSQ setting (among the ones examined) is roughly half
of the baseline. Among different FSQ configurations, smaller

16We also experimented with the pre-trained Mistral-7B-v0.1 and
instruction-finetuned Mistral-7B-Instruct-v0.1 LLM variants [93]. These did
not offer new insights; in particular we found both variants to have similar
ability to follow prompt contextualization instructions on our task.

T
im
e	
in
	m
s

0

5

10

15

20

25

30

35

Number	of	biasing	phrases

0-2.5k 2.5k-5k 5k-7.5k 7.5k-10k 10k-12.5k 12.5k-15k 15k-17.5k 17.5k-20k >20k

Baseline FSQ_G16_L75555 FSQ_G16_L8555 FSQ_G8_L75555 FSQ_G8_L8555

Fig. 5. Runtime analysis of baseline and proposed approaches across various
biasing list sizes for all the utterances in our test set. The error bars represent
one standard deviation from the averages, computed from all the queries in
the same bin.

number of groups, G, and fewer levels, |L|, are contributing
factors. This is consistent with the complexity analysis in
Table I, where we saw that runtime complexity is proportional
to both those parameters. Also note that for all the models in
Fig. 5, |L| ·G < D = 256.

Fig. 6 shows the memory usage analysis of the baseline and
proposed approaches. For this analysis, we picked a query
with about one second of audio and roughly 10k biasing
phrases. Then, we artificially created larger biasing lists by
repetition. The purpose of doing so is to compare memory
usage in extreme hypothetical scenarios with huge biasing
lists. Similar to the runtime analysis, we measured the memory
usage for computing cross-attention up to the point of dot-
product between queries and keys. In this analysis, we used
full precision for floating point numbers. For indices, since we
only need 3 bits for each level (to represent up to max li = 8
values), we can use a 16-bit integer to represent all the
elements egi in eg , for every group g ∈ {1, 2, . . . , G} (Eq. (4)).
Given that this particular FSQ configuration has 16 groups,
each biasing phrase only needs 32 bytes, which is substantially
smaller than the space needed for the baseline approach.

M
em
or
y	
us
ag
e	
in
	M
B

0

250

500

750

1000

Number	of	biasing	phrases

10k 50k 100k 500k 1m

30.815.43.11.70.4

982.7

491.4

98.3
54.6

10.9

Baseline FSQ_G16_L8555

Fig. 6. Memory usage of baseline and proposed approaches across var-
ious biasing list sizes. The FSQ configuration has G = 16 groups and
L = [8, 5, 5, 5] levels.

The results show that our proposed algorithm uses little
memory compared to the baseline, as expected. Consider the
case with 1 million biasing phrases: we need 16 × 2 × 1
million bytes, i.e., 30.5MB of memory, to represent all the
biasing phrases. In comparison, the baseline approach would
need 256 × 4 × 1 million bytes, i.e. 976.6MB of memory
to represent the whole biasing list. Even if we reduced the

11

precision for the biasing phrases from 32-bit to 8-bit, the
memory needed for the baseline approach would still be
much larger than our quantization-based algorithm (244MB vs.
31MB). Therefore, depending on the precision, our approach
achieves over 85-95% reduction in memory usage when the
biasing list has over 10k entries. This memory reduction is due
to a much more compact representation of the biasing phrases,
as explained in Section IV-B. However, we would like to
mention that to achieve the full memory reduction, one would
need to implement a kernel that combines index selection, sum
reduction and TopK retrieval as in Algorithm 1. Without this
kernel, the memory reduction is smaller; we discuss this in
detail in Appendix B.

VI. CONCLUSIONS

We proposed an efficient approximation to cross-attention that
uses vector quantization techniques, allowing us to ground
large biasing catalogues quickly on audio data with limited
memory footprint. We incorporated this mechanism in a re-
trieval setup, where the shortlisted phrases are used to bias
an ASR system through dense cross-attention and/or through
LLM prompting. We evaluated our proposed methods on a
large set, with our strongest system yielding a relative contact
NEER reduction of about 71% and a relative WER reduction
of about 30%, when compared to a non-biased baseline.

Our quantization-based technique allows the ASR model
to leverage more biasing entries that would otherwise be
discarded due to excessive compute and memory cost. We
demonstrated the need for employing larger biasing catalogues
by reporting sub-optimal results when we limited the initial
catalogues to a few thousand phrases, a common practice in
the literature. Our retrieval approach opens up the way to
scale NCB up to a much larger number of biasing phrases,
something essential in several scenarios; for example, when the
goal is to bias the ASR model on the media domain (including
all the aggregated song and album titles).

While we analyzed and evaluated our system using FSQ, the
ideas we described can potentially be paired with alternative
efficient vector quantization algorithms and retrieval-oriented
losses (e.g., [94]). Additionally, we believe that further im-
provements can be obtained by relatively simple enhance-
ments. For instance, for all the LLM-based results reported
in this work we used a publicly available pre-trained LLM.
The overall accuracy could be improved after fine-tuning such
an LLM in the speech domain and adapting it for our use
case. Moreover, even though we followed the common practice
of employing a separate transformer-based context encoder,
we could exploit the representational capabilities of the LLM
even more, by processing the biasing phrases through it in
an LLM2Vec-like manner [95]. This could potentially further
reduce the overall memory footprint, by discarding all the
additional context encoder parameters.

ACKNOWLEDGMENTS

We would like to thank Stefan Braun, Erik McDermott, Xinwei
Li and Stephen Pulman for their feedback on this work.
Thanks to Xiao Zhang for providing an in-house NNLM.

APPENDIX A
SINGLE-STAGE QUANTIZED NCB

Throughout this paper we have explored two-stage NCB
systems where we used our quantization-based approach to
estimate dot-products between queries (acoustic embeddings)
and keys (biasing embeddings) in order to retrieve the TopK
biasing phrases with the highest scores. In this appendix we
study a single-stage NCB approach where the biasing module
of Dense NCB (Fig. 1a) is fully replaced by its quantized coun-
terpart; we refer to this NCB mode as Quantized NCB. The
new quantized module approximates Eq. (2) using discretized
contextual encodings, introduced in Section III, for both keys
and values. Representing the keys, K, and the values, V , by
their quantized approximations, Ṽ and K̃, respectively, the
biasing encodings can be simply estimated as

Ỹ = softmax
(
α QK̃⊤

)
Ṽ (12)

Those biasing encodings, Ỹ , are added to the acoustic
embeddings and fed into the ASR decoders. The dot-products
in QK̃⊤ are still estimated using the algorithm described in
Section IV, but without the need for TopK retrieval.

Table VI repeats the results of Table II for Dense NCB
(Fig. 1a) and Retrieval NCB (Fig. 1b) systems and compares
their performance to their Quantized NCB equivalents. Even
though Quantized NCB performs better that the non-biased
baseline (with max |B| = 0), we can see that the quantization-
based approximation, when used in a standalone manner,
offers substantially worse biasing accuracy, compared to either
dense cross-attention or retrieval-oriented two-stage setups.

TABLE VI
WER AND NEER METRICS FOR THE BASELINE AND NCB-ENABLED

MODELS, THEIR QUANTIZED APPROXIMATIONS, AND THEIR RETRIEVAL
ORIENTED SETUPS.

System max |B| WER[%] NEER [%]
Contact Other

Dense NCB 0 7.0 39.4 15.8
Dense NCB 5k 5.5 17.7 15.4

(I) Quantized NCB 5k 6.2 26.6 16.0
(II) Quantized NCB 5k 6.3 28.6 15.9

(I) Retrieval NCB 5k 5.5 17.7 15.4
(II) Retrieval NCB 5k 5.5 17.7 15.4

Systems (I) based on G = 16, L = [7, 5, 5, 5, 5] FSQ variant.
Systems (II) based on G = 16, L = [8, 5, 5, 5] FSQ variant.
Results for TopK = 5 (in case of Retrieval NCB), w/ CTC + attention

rescoring decoder.

We observed that, on average, the attention scores of
the quantized systems have lower values and a less peaky
behavior compared to dense cross-attention. In other words,
the attention probability mass, after the softmax function of
Eq. (2) or Eq. (12), is distributed across more biasing phrases
in the case of quantized approaches, which can lead to higher
confusion among different phrases. This also explains the stats
provided in Fig. 3, where we can see that the number of Top1
phrases retrieved per utterance, on average, is much higher
for the quantized systems. For instance, for the setup we
have mostly studied through our experiments in Section V,

12

with G = 16, L = [8, 5, 5, 5], we have 7.9 phrases retrieved
on average per utterance, compared to only 3.5 phrases in the
case of non-quantized cross-attention. Note that this behavior
can be especially problematic during frames without spoken
entities where the model is expected to attend to the back-off
token. This is because if the model does not attend as much as
it should to the back-off, it can yield over-biased transcriptions.
However, as long as the right phrases are included in the
retrieved set (i.e., the success rate—or recall—is high enough),
we can successfully use the quantization-based, retrieval-
oriented systems without hurting ASR accuracy.

APPENDIX B
IMPLEMENTATION AND MEMORY CONSUMPTION

In this appendix, we explain why a direct implementation
of Algorithm 1 in PyTorch could not achieve full memory
reduction. This is due to the fact that PyTorch API does not
allow performing index selection, sum reduction and retrieval
at the same time. See a simplified code snippet of Algorithm 1
implemented in PyTorch,

1 # K is the number of TopK entries for retrieval
2 # T is the length of acoustic encoder frame sequence
3 # B is the number of biasing phrases
4 # G is the number of groups
5 # L is the depth of the FSQ level
6 # U is the number of different possible values in

all FSQ levels
7 # e contains the indices with shape [B, G*L]
8 # S_qan is the score tensor with shape [T, G*L*U]
9 # result is the output tensor with shape [T, K]

10

11 e = e.view(-1)
12 a = torch.index_select(S_qan, dim=-1, index=e)
13 a = a.view(T, B, G*L)
14 s = torch.sum(a, dim=-1)
15 s = s.view(T, B)
16 result = torch.topk(s, K, dim=1)

The problem is that the index selection step would create
an intermediate tensor, a, of shape [T, B*L*G], which is
dominated by B for large biasing catalogues. For instance, for
a typical setting in our experiments we could have B=10000,
L=4, G=16, and T=33 for a 2sec audio (200 frames with
6-fold downsampling). Additionally, the TopK operation is
performed only after we have the entire score tensor, s. That
said, the memory consumption in that case is still smaller
than the baseline approach that needs O(|B|D) space, since
D > G · |L| in a typical setting. To achieve full memory
reduction, however, one would need to implement a kernel that
performs index selection, sum reduction and TopK retrieval
at the same time as in Algorithm 1. Fig. 7 compares the
memory usage with or without this custom kernel, using the
same assumptions as in Section V-C.

REFERENCES

[1] R. Prabhavalkar, T. Hori, T. N. Sainath et al., “End-to-end speech
recognition: A survey,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 32, pp. 325–351, 2024.

[2] J. Guo, T. N. Sainath, and R. J. Weiss, “A spelling correction model
for end-to-end speech recognition,” in Proc. ICASSP. IEEE, 2019, pp.
5651–5655.

[3] T. N. Sainath, R. Prabhavalkar, S. Kumar et al., “No need for a lexicon?
Evaluating the value of the pronunciation lexica in end-to-end models,”
in Proc. ICASSP. IEEE, 2018, pp. 5859–5863.

M
em
or
y	
us
ag
e	
in
	M
B

0

250

500

750

1000

Number	of	biasing	phrases

10k 50k 100k 500k 1m

30.815.43.11.70.4

276.4

138.2

27.715.43.1

982.7

491.4

98.3
54.6

10.9

Baseline FSQ_G16_L8555_No_Kernel FSQ_G16_L8555_Kernel

Fig. 7. Memory usage of baseline and our proposed approach with or without
a custom kernel to perform index selection, sum reduction and retrieval at the
same time. The FSQ uses G = 16 groups and L = [8, 5, 5, 5] levels.

[4] U. Alon, G. Pundak, and T. N. Sainath, “Contextual speech recognition
with difficult negative training examples,” in Proc. ICASSP. IEEE,
2019, pp. 6440–6444.

[5] D. Zhao, T. N. Sainath, D. Rybach et al., “Shallow-fusion end-to-end
contextual biasing,” in Proc. Interspeech. ISCA, 2019, pp. 1418–1422.

[6] D. Le, G. Keren, J. Chan et al., “Deep shallow fusion for RNN-T
personalization,” in Proc. SLT. IEEE, 2021, pp. 251–257.

[7] K. B. Hall, E. Cho, C. Allauzen et al., “Composition-based on-the-fly
rescoring for salient n-gram biasing,” in Proc. Interspeech. ISCA, 2015,
pp. 1418–1422.

[8] I. Williams, A. Kannan, P. S. Aleksic et al., “Contextual speech
recognition in end-to-end neural network systems using beam search,”
in Proc. Interspeech. ISCA, 2018, pp. 2227–2231.

[9] E. McDermott, H. Sak, and E. Variani, “A density ratio approach to
language model fusion in end-to-end automatic speech recognition,” in
Proc. ASRU. IEEE, 2021, pp. 434–441.

[10] Z. Meng, N. Kanda, Y. Gaur et al., “Internal language model estimation
for domain-adaptive end-to-end speech recognition,” in Proc. ICASSP.
IEEE, 2021, pp. 7338–7342.

[11] G. Pundak, T. N. Sainath, R. Prabhavalkar et al., “Deep context: End-
to-end contextual speech recognition,” in Proc. SLT. IEEE, 2018, pp.
418–425.

[12] F. Chang, J. Liu, M. Radfar et al., “Context-aware transformer transducer
for speech recognition,” in Proc. ASRU. IEEE, 2021, pp. 503–510.

[13] K. M. Sathyendra, T. Muniyappa, F. Chang et al., “Contextual adapters
for personalized speech recognition in neural transducers,” in Proc.
ICASSP. IEEE, 2022, pp. 8537–8541.

[14] A. Bruguier, R. Prabhavalkar, G. Pundak, and T. N. Sainath, “Phoebe:
Pronunciation-aware contextualization for end-to-end speech recogni-
tion,” in Proc. ICASSP. IEEE, 2019, pp. 6171–6175.

[15] M. Jain, G. Keren, J. Mahadeokar et al., “Contextual RNN-T for open
domain ASR,” in Proc. Interspeech. ISCA, 2020, pp. 11–15.

[16] G. Sun, C. Zhang, and P. C. Woodland, “Tree-constrained pointer
generator for end-to-end contextual speech recognition,” in Proc. ASRU.
IEEE, 2021, pp. 780–787.

[17] T. Munkhdalai, K. C. Sim, A. Chandorkar et al., “Fast contextual
adaptation with neural associative memory for on-device personalized
speech recognition,” in Proc. ICASSP. IEEE, 2022, pp. 6632–6636.

[18] Z. Meng, Z. Wu, R. Prabhavalkar et al., “Text injection for neural
contextual biasing,” in Proc. Interspeech. ISCA, 2024, pp. 2985–2989.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, pp. 1735–1780, 1997.

[20] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”
in Proc. NeuRIPS, 2017, pp. 5998–6008.

[21] S. Minaee, T. Mikolov, N. Nikzad et al., “Large language models: A
survey,” arXiv preprint arXiv:2402.06196, 2024.

[22] X. Gong, A. Lv, Z. Wang, and Y. Qian, “Contextual biasing speech
recognition in speech-enhanced large language model,” in Proc. Inter-
speech. ISCA, 2024, pp. 257–261.

[23] M. Wang, W. Han, I. Shafran et al., “SLM: Bridge the thin gap between
speech and text foundation models,” in Proc. ASRU. IEEE, 2023.

[24] Z. Chen, H. Huang, A. Andrusenko et al., “SALM: Speech-augmented
language model with in-context learning for speech recognition and
translation,” in Proc. ICASSP. IEEE, 2024, pp. 13 521–13 525.

[25] Z. Lei, X. Na, M. Xu et al., “Contextualization of ASR with LLM using
phonetic retrieval-based augmentation,” in Proc. ICASSP. IEEE, 2025.

[26] A. Alexandridis, K. M. Sathyendra, G. Strimel et al., “Gated contextual
adapters for selective contextual biasing in neural transducers,” in Proc.
ICASSP. IEEE, 2023.

13

[27] Z. Yang, S. Sun, X. Wang et al., “Two stage contextual word filtering
for context bias in unified streaming and non-streaming transducer,” in
Proc. Interspeech. ISCA, 2023, pp. 3257–3261.

[28] M. Levy, A. Jacoby, and Y. Goldberg, “Same task, more tokens: The
impact of input length on the reasoning performance of large language
models,” in Proc. ACL (Volume 1: Long Papers). ACL, 2024, pp.
15 339–15 353.

[29] S. Tong, P. Harding, and S. Wiesler, “Slot-triggered contextual biasing
for personalized speech recognition using neural transducers,” in Proc.
ICASSP. IEEE, 2023.

[30] Z. Chen, M. Jain, Y. Wang et al., “Joint grapheme and phoneme
embeddings for contextual end-to-end ASR.” in Proc. Interspeech.
ISCA, 2019, pp. 3490–3494.

[31] D. Kulshreshtha, S. Dingliwal, B. Houston, and S. Bodapati, “Multi-
lingual contextual adapters to improve custom word recognition in low-
resource languages,” in Proc. Interspeech. ISCA, 2023, pp. 3302–3306.

[32] Y. Sudo, M. Shakeel, Y. Fukumoto et al., “Contextualized automatic
speech recognition with attention-based bias phrase boosted beam
search,” in Proc. ICASSP. IEEE, 2024, pp. 10 896–10 900.

[33] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete
representation learning,” in Proc. NeurIPS, vol. 30, 2017, p. 6309–6318.

[34] F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen, “Finite scalar
quantization: VQ-VAE made simple,” in Proc. ICLR, 2024.

[35] T. Hori, M. Kocour, A. Haider et al., “Delayed fusion: Integrating
large language models into first-pass decoding in end-to-end speech
recognition,” in Proc. ICASSP. IEEE, 2025.

[36] B. Yusuf, A. Gourav, A. Gandhe, and I. Bulyko, “On-the-fly text retrieval
for end-to-end ASR adaptation,” in Proc. ICASSP. IEEE, 2023.

[37] M. Wang, I. Shafran, H. Soltau et al., “Speech-to-text adapter and
speech-to-entity retriever augmented LLMs for speech understanding,”
arXiv preprint arXiv:2306.07944, 2023.

[38] X. Gong, A. Lv, Z. Wang et al., “BR-ASR: Efficient and scalable bias
retrieval framework for contextual biasing ASR in speech LLM,” arXiv
preprint arXiv:2505.19179, 2025.

[39] Z. Wu, G. Song, C. Li et al., “Deferred NAM: Low-latency top-k context
injection via deferred context encoding for non-streaming ASR.” in Proc.
NAACL. ACL, 2024, pp. 315–323.

[40] Z. Huang, D. Caseiro, K. Joshi et al., “Optimizing large-scale context
retrieval for end-to-end ASR,” in Proc. Interspeech. ISCA, 2024, pp.
4573–4577.

[41] S. Dingliwal, M. Sunkara, S. Ronanki et al., “Personalization of CTC
speech recognition models,” in Proc. SLT. IEEE, 2023, pp. 302–309.

[42] Y. Peng, Y. Sudo, M. Shakeel, and S. Watanabe, “OWSM-CTC: An
open encoder-only speech foundation model for speech recognition,
translation, and language identification,” in Proc. ACL (Volume 1: Long
Papers). ACL, 2024, pp. 10 192–10 209.

[43] R. Huang, M. Yarmohammadi, S. Khudanpur, and D. Povey, “Improv-
ing neural biasing for contextual speech recognition by early context
injection and text perturbation,” in Proc. Interspeech. ISCA, 2024, pp.
752–756.

[44] S. D. Torres, A. Sen, A. Rana et al., “Promptformer: Prompted con-
former transducer for ASR,” in Proc. ICASSP. IEEE, 2024, pp. 11 821–
11 825.

[45] K. Huang, A. Zhang, Z. Yang et al., “Contextualized end-to-end speech
recognition with contextual phrase prediction network,” in Proc. Inter-
speech. ISCA, 2023, pp. 4933–4937.

[46] S. M. Jayanthi, D. Kulshreshtha, S. Dingliwal et al., “Retrieve and
copy: Scaling ASR personalization to large catalogs,” in Proc. EMNLP:
Industry Track. ACL, 2023, pp. 631–639.

[47] S. Zhou, Z. Li, Y. Hong et al., “CopyNE: Better contextual ASR by
copying named entities,” in Proc. ACL (Volume 1: Long Papers). ACL,
2024, pp. 2675–2686.

[48] M. A. Jalal, P. P. Parada, G. Pavlidis et al., “Locality enhanced dynamic
biasing and sampling strategies for contextual ASR,” in Proc. ASRU.
IEEE, 2023.

[49] M. Bleeker, P. Swietojanski, S. Braun, and X. Zhuang, “Approximate
nearest neighbour phrase mining for contextual speech recognition,” in
Proc. Interspeech. ISCA, 2023, pp. 939–943.

[50] T. N. Sainath, R. Prabhavalkar, D. Caseiro et al., “Improving contextual
biasing with text injection,” in Proc. ICASSP. IEEE, 2023.

[51] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-
to-end speech recognition using multi-task learning.” in Proc. ICASSP.
IEEE, 2017, pp. 4835–4839.

[52] P. K. Rubenstein, C. Asawaroengchai, D. D. Nguyen et al., “Au-
dioPaLM: A large language model that can speak and listen,” arXiv
preprint arXiv:2306.12925, 2023.

[53] F. Seide, M. Doulaty, Y. Shi et al., “Speech ReaLLM–real-time stream-
ing speech recognition with multimodal LLMs by teaching the flow of
time,” in Proc. Interspeech. ISCA, 2024, pp. 1900–1904.

[54] X. Yang, W. Kang, Z. Yao et al., “PromptASR for contextualized ASR
with controllable style,” in Proc. ICASSP. IEEE, 2024, pp. 10 536–
10 540.

[55] E. Lakomkin, C. Wu, Y. Fathullah et al., “End-to-end speech recognition
contextualization with large language models,” in Proc. ICASSP. IEEE,
2024, pp. 12 406–12 410.

[56] C. Chen, R. Li, Y. Hu et al., “It’s never too late: Fusing acoustic infor-
mation into large language models for automatic speech recognition,”
in Proc. ICLR, 2024.

[57] K. Hu, T. N. Sainath, B. Li et al., “Massively multilingual shallow fusion
with large language models,” in Proc. ICASSP. IEEE, 2023.

[58] L. Xu, Y. Gu, J. Kolehmainen et al., “RescoreBERT: Discriminative
speech recognition rescoring with BERT,” in Proc. ICASSP. IEEE,
2022, pp. 6117–6121.

[59] C.-H. H. Yang, Y. Gu, Y.-C. Liu et al., “Generative speech recognition
error correction with large language models and task-activating prompt-
ing,” in Proc. ASRU. IEEE, 2023.

[60] A. Radford, J. W. Kim, T. Xu et al., “Robust speech recognition via
large-scale weak supervision,” in Proc. ICML. PMLR, 2023, pp.
28 492–28 518.

[61] A. Robatian, M. Hajipour, M. R. Peyghan et al., “GEC-RAG: Improving
generative error correction via retrieval-augmented generation for auto-
matic speech recognition systems,” arXiv preprint arXiv:2501.10734,
2025.

[62] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of
deep learning,” Neurocomputing, vol. 452, pp. 48–62, 2021.

[63] T. Dao, D. Fu, S. Ermon et al., “FlashAttention: Fast and memory-
efficient exact attention with IO-awareness,” Proc. NeuRIPS, vol. 35,
pp. 16 344–16 359, 2022.

[64] H. Liu, M. Zaharia, and P. Abbeel, “Ring attention with blockwise
transformers for near-infinite context,” in NeurIPS Foundation Models
for Decision Making Workshop, 2023.

[65] D. Le, M. Jain, G. Keren et al., “Contextualized streaming end-to-end
speech recognition with trie-based deep biasing and shallow fusion,” in
Proc. Interspeech. ISCA, 2021, pp. 1772–1776.

[66] M. Han, L. Dong, Z. Liang et al., “Improving end-to-end contextual
speech recognition with fine-grained contextual knowledge selection,”
in Proc. ICASSP. IEEE, 2022, pp. 8532–8536.

[67] T. Munkhdalai, Z. Wu, G. Pundak et al., “NAM+: Towards scalable
end-to-end contextual biasing for adaptive ASR,” in Proc. SLT. IEEE,
2023, pp. 190–196.

[68] Z. Wu, T. Munkhdalai, P. Rondon et al., “Dual-mode NAM: Effective
Top-K context injection for end-to-end ASR,” in Proc. Interspeech.
ISCA, 2023, pp. 221–225.

[69] J. Fu, J. Liu, H. Tian et al., “Dual attention network for scene
segmentation,” in Proc. CVPR. IEEE/CVF, 2019, pp. 3141–3149.

[70] S. Y. Sahai, J. Liu, T. Muniyappa et al., “Dual-attention neural trans-
ducers for efficient wake word spotting in speech recognition,” in Proc.
ICASSP. IEEE, 2023.

[71] A. Gourav, J. Kolehmainen, P. Shivakumar et al., “Multi-modal retrieval
for large language model based speech recognition,” in Findings ACL.
ACL, 2024, pp. 4435–4446.

[72] R. Gray, “Vector quantization,” IEEE ASSP Magazine, vol. 1, no. 2, pp.
4–29, 1984.

[73] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-
fidelity images with VQ-VAE-2,” in Proc. NeurIPS, vol. 32, 2019.

[74] N. Zeghidour, A. Luebs, A. Omran et al., “Soundstream: An end-to-end
neural audio codec,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 30, pp. 495–507, 2022.

[75] D. Yang, S. Liu, R. Huang et al., “HiFi-codec: Group-residual
vector quantization for high fidelity audio codec,” arXiv preprint
arXiv:2305.02765, 2023.

[76] J. Peng, D. Liu, S. Xu, and H. Li, “Generating diverse structure for image
inpainting with hierarchical VQ-VAE,” in Proc. CVPR. IEEE/CVF,
2021, pp. 10 775–10 784.

[77] D. Lee, C. Kim, S. Kim et al., “Autoregressive image generation using
residual quantization,” in Proc. CVPR. IEEE/CVF, 2022, pp. 11 523–
11 532.

[78] A. Roy, A. Vaswani, A. Neelakantan, and N. Parmar, “Theory
and experiments on vector quantized autoencoders,” arXiv preprint
arXiv:1805.11063, 2018.

[79] A. Łańcucki, J. Chorowski, G. Sanchez et al., “Robust training of vector
quantized bottleneck models,” in Proc. IJCNN. IEEE, 2020.

14

[80] J. Yu, X. Li, J. Y. Koh et al., “Vector-quantized image modeling with
improved VQGAN,” in Proc. ICLR, 2022.

[81] L. Yu, J. Lezama, N. B. Gundavarapu et al., “Language model beats
diffusion - tokenizer is key to visual generation,” in Proc. ICLR, 2024.

[82] J. Zhou, S. Zhao, Y. Liu et al., “KNN-CTC: Enhancing ASR via retrieval
of CTC pseudo labels,” in Proc. ICASSP. IEEE, 2024, pp. 11 006–
11 010.

[83] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arXiv
preprint arXiv:1308.3432, 2013.

[84] P. Swietojanski, S. Braun, D. Can et al., “Variable attention masking
for configurable transformer transducer speech recognition,” in Proc.
ICASSP. IEEE, 2023.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2014.

[86] D. S. Park, W. Chan, Y. Zhang et al., “SpecAugment: A simple
data augmentation method for automatic speech recognition,” in Proc.
Interspeech. ISCA, 2019, pp. 2613–2617.

[87] T. Kudo and J. Richardson, “SentencePiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
in Proc. EMNLP: System Demonstrations. ACL, 2018, pp. 66–71.

[88] X. Geng and H. Liu, “OpenLLaMA: An open reproduction of
LLaMA,” May 2023. [Online]. Available: https://github.com/openlm-
research/open llama

[89] H. Touvron, T. Lavril, G. Izacard et al., “LLaMA: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[90] Z. Yao, D. Wu, X. Wang et al., “WeNet: Production oriented streaming
and non-streaming end-to-end speech recognition toolkit,” in Proc.
Interspeech. IEEE, 2021, pp. 4054–4058.

[91] T. Hori, S. Watanabe, and J. Hershey, “Joint CTC/attention decoding for
end-to-end speech recognition,” in Proc. ACL (Volume 1: Long Papers).
ACL, 2017, pp. 518–529.

[92] Y. Higuchi, B. Yan, S. Arora et al., “BERT meets CTC: New formulation
of end-to-end speech recognition with pre-trained masked language
model,” in Findings EMNLP. ACL, 2022, pp. 5486–5503.

[93] A. Q. Jiang, A. Sablayrolles, A. Mensch et al., “Mistral 7B,” arXiv
preprint arXiv:2310.06825, 2023.

[94] R. Guo, P. Sun, E. Lindgren et al., “Accelerating large-scale inference
with anisotropic vector quantization,” in Proc. ICML. PMLR, 2020,
pp. 3887–3896.

[95] P. BehnamGhader, V. Adlakha, M. Mosbach et al., “LLM2Vec: Large
language models are secretly powerful text encoders,” Proc. COLM,
2024.

