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Summary: Objectives. Auditory-perceptual assessments are the gold standard for assessing voice quality. 
This project aims to develop a machine-learning model for measuring perceptual dysphonia severity of audio 
samples consistent with assessments by expert raters.  
Methods. The Perceptual Voice Qualities Database samples were used, including sustained vowel and 
Consensus Auditory-Perceptual Evaluation of Voice sentences, which were previously expertly rated on a 0–100 
scale. The OpenSMILE (audEERING GmbH, Gilching, Germany) toolkit was used to extract acoustic (Mel- 
Frequency Cepstral Coefficient-based, n = 1428) and prosodic (n = 152) features, pitch onsets, and recording 
duration. We utilized a support vector machine and these features (n = 1582) for automated assessment of 
dysphonia severity. Recordings were separated into vowels (V) and sentences (S) and features were extracted 
separately from each. Final voice quality predictions were made by combining the features extracted from the 
individual components with the whole audio (WA) sample (three file sets: S, V, WA). 
Results. This algorithm has a high correlation (r = 0.847) with estimates of expert raters. The root mean square 
error was 13.36. Increasing signal complexity resulted in better estimation of dysphonia, whereby combining the 
features outperformed WA, S, and V sets individually. 
Conclusion. A novel machine-learning algorithm was able to perform perceptual estimates of dysphonia se-
verity using standardized audio samples on a 100-point scale. This was highly correlated to expert raters. This 
suggests that ML algorithms could offer an objective method for evaluating voice samples for dysphonia se-
verity. 
Level of Evidence. 4 
Key Words: Machine learning–Voice evaluation–Perceptual voice evaluation–Automation–Artificial in-
telligence.   

BACKGROUND 
Structured voice evaluation is a critical component of as-
sessing patients with dysphonia. Comprehensive assess-
ment typically includes both perceptual and instrumental 
assessments. Auditory-perceptual analysis represents the 
gold standard for the assessment of dysphonia severity. It is 
inexpensive and robust.1,2 This method of voice assessment 
is widely accepted in clinical applications as well as research 
purposes.2-4 

Despite the widespread use of perceptual evaluations, it 
remains a subjective assessment and raters will develop 
their own internal reference standards with inherent biases, 
which impact the judgment of future voice samples.5  

These internal standards can vary across time and between 

different raters, highlighting one critique of this form of 
voice assessment, namely reliability. Through standardized 
scales, such as the Consensus Auditory-Perceptual Eva-
luation of Voice (CAPE-V) tool, high levels of consistency 
within and across raters can be achieved.6,7 With tools such 
as this, small-scale changes from sample to sample can be 
reliably detected.4,6,8 Reliability of auditory-perceptual 
evaluations has been extensively researched and, when 
confounding variables are controlled, they have been 
proven a robust form of voice assessment.2,4,6,8,9 

Expert raters are important in the reliability of these 
assessments.2,10-12 Speech pathology assessment is a time- 
limited resource and voice evaluations are limited to the 
times patients can provide voice samples. Furthermore, 
these assessments typically rely on in-person voice samples, 
though some research suggests that remote sample collec-
tion from non-optimized settings may be adequate for 
clinical assessment.13,14 These restrictions indicate a re-
source bottleneck in these evaluations. A computer-auto-
mated perceptual evaluation tool may provide an 
opportunity to relieve the resource limitations and objec-
tively measure voice samples. This might allow for interval 
evaluations between in-person visits, which could increase 
the total number of assessments, and ultimately could 
allow for within-person normative values as targets for 
tracking therapeutic improvement or decline. 

Recent advancements in machine learning methods have 
led to many medical applications, including applications 
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within otolaryngology—head and neck surgery.15-17 With 
respect to voice assessments, researchers have developed 
tools to categorize samples according to gender and eval-
uate dysphonia using sustained vowel samples.15 However, 
the traditional auditory-perceptual assessment includes 
both sustained vowels and connected speech to evaluate 
voice parameters across a variety of laryngeal beha-
viors.18,19 To date, there are no machine-learning global 
assessments of dysphonia severity using both sustained 
vowels and sentence samples calibrated to known expert 
ratings. In this study, the authors seek to develop a ma-
chine-learning algorithm for evaluating dysphonia severity 
on a 100-point scale using previously collected and expertly 
rated voice samples of sustained vowels and connected 
speech. 

METHODS 
This study was designed using a previously labeled data set 
to train a machine-learning model on. The Perceptual 
Voice Qualities Database (PVQD) includes audio samples 
(n = 295) which were professionally captured at partici-
pating voice centers. These samples include sustained vo-
wels and connected speech (CAPE-V sentences) segments. 
Furthermore, each sample was previously rated by three 
experts on a 0–100 scale according to the standards of the 
CAPE-V. The labeled data set allows the computer to 
know how the samples are supposed to be rated and to fit 
different criteria for the prediction model result in similar 
estimates. The primary goal was to teach the model to 
categorize voice samples according to the same scale. 

To do this, we used the OpenSMILE open-source toolkit 
with the emobase2010 configuration.20 This was used to 
extract acoustic and prosodic features, as well as pitch 
onsets and recording duration. More explicitly, we ex-
tracted a base of 34 low-level descriptor (LLD) features 
(including Mel-Frequency Cepstral Coefficient features, 
logarithmic power of Mel-frequency bands, normalized 
intensity, etc) with 34 corresponding delta coefficients ap-
pended and applied 21 different statistical functions (such 
as standard deviation, arithmetic mean, skewness, kurtosis, 
etc) to these, which resulted in 1428 features. Next, 19 
functionals were applied to four LLD features based on the 
pitch (F0final, jitterLocal, jitterDDP, and shimmerLocal) 
as well as their corresponding four delta coefficients, re-
sulting in 152 features. Finally, we appended pitch onsets 
and recording duration features. All LLD features are ex-
tracted based on a frame-by-frame analysis, using windows 
of 25 ms with 10 ms frameshifts. 

In consideration of the nature and size of our dataset, we 
adopted a support vector machine (SVM) instead of a re-
cursive neural network. An SVM is a method often 
adopted for categorization problems, looking to draw lines 
between categories that maximize the margin between the 
line and the closest data points in each category. Within the 
context of the SVM, different features were tried to achieve 
the highest correlation and lowest root mean square error 

(RMSE) to the expert raters’ data. The features were 
analyzed separately for different parts of the voice re-
cordings, and then combined to make the final predictions. 

Our feature set, extracted through OpenSmile, consists 
of descriptive statistics related to low-level characteristics. 
These are widely utilized in various speech-related tasks 
such as emotion recognition. The SVM model was im-
plemented with Gaussian kernel, and we tried different 
configurations of the penalty parameter C [10 , 1, 10 ]1 1

and kernel coefficient [10 , 10 , 10 ]4 3 2 . The optimal 
parameters were selected based on the five-fold cross-vali-
dation. This entails splitting the data set into five parts. The 
model is then trained and tested five times, each using a 
different part as the test data and the remainder as the 
training data. Since the data is limited, we selected the K 
best features using a univariate F test by the scikit-learn 
Python module,21 where K }50, 100, 150, 200, …, 950, 
1000}. The F test measures the impact of each feature on 
the output. The features with the highest scores were se-
lected for the model and the number of features selected 
was chosen from the set of values ranging from 50 to 1000. 

We separated the recordings into two segments: sus-
tained vowels (V) and connected sentences (S). For each 
segment, we separately extracted features and also gener-
ated a third dataset by extracting features from the whole, 
unsegmented audio file (WA). To improve the predictive 
quality of the model, we concatenated the features from 
these three datasets before selecting the K best features. We 
selected the combined audio set as it had the best correla-
tion and lowest RMSE. After feature selection, we found 
jitter-related features of the entire audio file were con-
sistently selected. Jitter, influenced by both sustained vo-
wels and connected sentences, is closely linked to overall 
voice quality. Extracting jitter features separately from 
these segments before combining them resulted in slightly 
lower accuracy, likely due to the short duration of some 
individual audio files. 

RESULTS 
The algorithm developed for this study was found to have a 
high correlation (r = 0.847) with estimates of expert raters 
when combining features of the three audio sets as shown 
in Table 1. The model showed enhanced performance when 

TABLE 1.  
Mean Error, RMSE, and Pearson’s Correlation Coefficient       

Mean 
Error 

RMSE Pearson's  

Whole audio 10.484 13.423 0.767 
Vowels only 12.337 16.098 0.822 
Sentences 10.996 14.233 0.846 
Combined (WA, VO, 

and SO) 
10.227 13.362 0.847 

Abbreviations: SO, sentences only; VO, vowels only; WA, whole 
audio.  
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exposed to the augmented dataset that is comprised of 
combined features from (S, V, and WA). This was in-
dicated by higher correlation coefficients and lower RMSE 
values. The sustained vowel segments alone showed Pear-
son’s correlation coefficient of 0.767. The sentences seg-
ment alone had a correlation of 0.822, and unsegmented 
audio (WA) had a correlation of 0.846. 

Mean error when combining three sets of features (V, S, 
WA) was 10.22, with RMSE of 13.36 (Table 1). Increasing 
signal complexity resulted in better estimation of dys-
phonia, whereby combining the features outperformed 
WA, S, and V sets individually. 

The mean of the two combined data sets was 29.88 
(standard deviation (SD) 21.24) for the algorithm and 
29.32 (SD 25.17) for the expert raters. The intra-class 
correlation coefficient was 0.83 (95% CI (confidence in-
terval) 0.79, 0.97, P  <  0.001) between the two data sets, 
suggesting they are strongly aligned (Figure 1). 

DISCUSSION 
Voice evaluations are a crucial part of evaluating laryngology 
patients. The current gold standard for voice evaluation is 
through auditory-perceptual assessments performed on re-
corded audio samples collected during the process of in- 
person office visits. Furthermore, expert voice raters are re-
quired for perceptual evaluations, representing a bottleneck in 
the scalability of ratings. These limitations expose a resource- 
intensive portion of the laryngology patient examinations. 

Automation using computers represents a potential pathway 
toward reducing the cost of voice evaluation and increasing 
potential measurement opportunities. Furthermore, machine 
learning techniques have been applied to tackle a wide variety 
of predictive tasks within medicine, including the identification 
of skin malignancies and disordered voices, as well as pre-
dicting binary gender from voice samples in gender-affirming 
voice care.15-17 Current-day computing power has led to in-
novation in voice assessments, particularly in the field of 
modern acoustic voice evaluations including spectral and 
cepstral analyses. 

In this study, the authors have sought to develop an al-
gorithm for automating portions of the auditory-percep-
tual evaluation of voice, namely Overall Severity. The high 
correlation coefficient and intra-class correlation with ex-
pert raters in the voice samples of the PVQD database 
indicate this algorithm is able to accurately estimate dys-
phonia severity. Moreover, the RMSE of 13.36 further 
attests to the accuracy of the algorithm. A low RMSE, a 
measure indicating the precision of the predicted versus 
observed values of a model, indicates a more accurate 
model. In this case, an RMSE of 13.36 further supports the 
utility of this algorithm for estimating dysphonia severity in 
clinical use. 

As far as the selection of the features and data sets, this 
was determined during the training of the model. The 5- 
fold cross-validation process revealed that the combined 
audio set was the most highly correlated and had the lowest 
RMSE of the group (WA, V, and S). In more detail, after 

FIGURE 1. Scatter plot of the combined audio set data showing the expert raters’ score on the y-axis and the ML algorithm score on the 
x-axis. The red line represents the line of best fit. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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performing feature selection on the combined version, the 
authors observed that the jitter-related features of WA are 
consistently chosen. This is a result of the fact that jitter is a 
characteristic influenced by both V and S, and results in 
independently different measures. The measurement of 
jitter as part of the whole audio file was more closely linked 
to overall vocal quality. Should we have used the jitter 
features extracted from S and V individually before com-
bining them, the measurement performed slightly less ac-
curately, presumably because of the short duration of the 
individual audio files in some samples. 

An area in that we saw the model stray from the experts 
was with the normal and severe ranges of the CAPE-V 
system. These edge cases were more likely to be classified as 
mildly or moderately dysphonic instead of normal and severe 
respectively (Figure 2). Further study of normal and severely 
dysphonic samples would be important to improve the va-
lidity of this tool. Until then, these limitations need to be 
recognized when evaluating the quality of this algorithm. 

For a tool like this to achieve maximal utility to clin-
icians, it would be applied to mobile and remotely collected 
voice samples. This study was performed on high-quality 
audio samples, but future studies should include non-op-
timized audio files for analysis. This algorithm performed 
very well with this data set and opens the doors for exciting 
opportunities to measure voice samples in an automated 
fashion, thereby reducing the resource requirements of 
perceptual voice. This could also lead to the opportunity of 
collecting measurements outside of traditional evaluation 
settings, such as clinical visits. If these possibilities can be 
achieved, within subject normative values and measure-
ment trending could be used to objectively track voice 
quality throughout treatment courses and time. These 
types of remote assessments could provide a method for 

biofeedback-driven therapeutic approaches. Lastly, the 
predictive capabilities of an algorithm like this could 
eventually recommend in-person visits for patients with 
acute voice changes when compared to their own normal 
samples. 

This study is limited by the development of this algorithm 
using the high-quality, professionally captured audio samples 
of the PVQD. This data set is small (n = 295), which re-
presents one limitation of the study’s generalizability and 
future studies should include a higher number of samples for 
assessment of the model. Secondly, the samples were vetted to 
be of high recording quality, which would not be re-
presentative of voice samples collected remotely or in non- 
optimized settings, and a secondary study should be com-
pleted before this can be applied to these settings. Finally, the 
data used to train and test the model were not prospectively 
captured as part of a clinical assessment or within subjects’ 
measurements. The repeatability across time within in-
dividuals should be further studied. 

CONCLUSIONS 
This study represents a significant step toward the automa-
tion of dysphonia severity evaluations. The machine learning 
algorithm developed in this study has shown remarkable 
consistency with expert raters in evaluating the overall se-
verity of dysphonia. The high correlation coefficient 
(r = 0.847), intra-class correlation (0.83), and small RMSE 
(13.36 points) between the algorithm’s ratings and the expert 
raters’ ratings suggest that this algorithm has the potential to 
become a reliable and objective tool for dysphonia evalua-
tion. With respect to comprehensive voice evaluations, dys-
phonia severity represents one small part. Future studies 
should evaluate the same algorithm as it applies to other parts 

FIGURE 2. Categorical ranges algorithm ratings versus speech-language pathologist (SLP) ratings. Here are the ratings divided into 
categories of normal (< 11), mild (11.1–35.0), moderate (35.1–72), and severe (> 72). The y-axis represents the number or samples found 
within each category. 
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of the CAPE-V to fully automate a perceptual evaluation. 
This study represents a significant achievement toward 
building confidence in automated voice evaluations. 
Importantly, this evaluates voice samples similar to the way 
clinicians do in many prominent voice centers (100-point 
CAPE-V scale). Categorization in this manner is far more 
complicated than would be found in previous studies that 
performed a similar task utilizing the GRBAS (Grade, 
Roughness, Breathiness, Asthenia, Strain) scale. 

This algorithm was trained on a dataset consisting of 
previously rated voice samples of the CAPE-V sentences 
and sustained vowels from the PVQD. Although the results 
are encouraging, more work is necessary to confirm these 
findings in a larger clinical population. In particular, future 
studies should assess the repeatability of the measures and 
compare them with expert raters’ ratings. Moreover, the 
algorithm’s performance may vary depending on the voice 
samples’ quality, as this study only used optimized voice 
samples. Therefore, future studies should evaluate the al-
gorithm’s performance using non-optimized voice samples. 

The developed algorithm has the potential to automate 
remote evaluations of dysphonia, which can be particularly 
useful in areas where access to clinical experts is limited. 
Furthermore, the algorithm provides an objective estima-
tion of dysphonia severity, which can aid in developing 
treatment plans and evaluating the effectiveness of inter-
ventions. By training a model on expected values from 
expert raters who utilized the CAPE-V scales, while it does 
not truly represent the full spectrum of the perceptual 
evaluation provided by a trained listener, it provides an 
objective estimation with contextual information of the 
CAPE-V scales. This number alone does not have meaning 
but provides a common nomenclature to communicate 
dysphonia severity by recognizing how the algorithm was 
trained to perform the estimation. 

In conclusion, this study has demonstrated that auto-
mated perceptual evaluations of dysphonia severity are 
possible using current computing power and machine 
learning techniques. With further development and vali-
dation, this algorithm has the potential to become an im-
portant tool for clinical evaluations of dysphonia. 

LAY SUMMARY 
This project develops and evaluates a machine learning 
model for the perceptual assessment of dysphonia severity 
of audio samples consistent with assessments by expert 
raters. The development of this model is a proof-of-concept 
for the automation of perceptual voice analyses using 
machine-learning approaches. 
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