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ABSTRACT

We introduce and analyze a novel approach to the problem of speaker
identification in multi-party recorded meetings. Given a speech seg-
ment and a set of available candidate profiles, a data-driven approach
is proposed learning the distance relations between them, aiming at
identifying the correct speaker label corresponding to that segment.
A recurrent, memory-based architecture is employed, since this class
of neural networks has been shown to yield improved performance in
problems requiring relational reasoning. The proposed encoding of
distance relations is shown to outperform traditional distance met-
rics, such as the cosine distance. Additional improvements are re-
ported when the temporal continuity of the audio signals and the
speaker changes is modeled in. In this paper, the proposed method is
evaluated in two different tasks, i.e. scripted and real-world business
meeting scenarios, where a relative reduction in speaker error rate of
39.28% and 51.84%, respectively, is reported when compared with
the baseline.

Index Terms— speaker identification, diarization, memory net-
works, meeting analysis

1. INTRODUCTION

Speaker identification is the task of determining the identity of the
person uttering a particular phrase, assuming a finite set of pre-
enrolled speakers is given [1]. Applying a continuous automatic
speaker identification system on recorded meetings with multi-
ple participants can significantly affect the performance of several
subtasks of the meeting analytics suite. For instance, correctly iden-
tifying the active speaker is an essential component for rich meeting
transcriptions (Speaker-Attributed Automatic Speech Recognition
- SA-ASR) [2, 3], speaker tracking [4], action item generation [5],
or speaker adaptation for more reliable ASR outputs [6]. The main
difference of the investigated task with speaker diarization is the
use of speaker profiles, since the meeting participants are known in
advance [7], i.e. the number of speakers and their acoustic identities
are provided.

For speaker attribution tasks, an enrollment phase is required.
During that phase, sample audio from the participants is collected
and the target speaker profiles (or identities) are constructed. Con-
tinuous speaker identification can be thought of as a two-step prob-
lem, with a segmentation and a classification phase. First, the au-
dio signal is segmented either uniformly [8] or based on estimated
speaker change points [3]. These segments are assumed speaker-
homogeneous!. Speech embeddings of each segment are extracted
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and then compared against all the available speaker profiles. By min-
imizing a particular distance metric (as described below), the most
suitable speaker label is assigned to the segment [3]. Initially, the ex-
tracted speaker-specific features/embeddings were based on the total
variability model [9], but lately bottleneck representations from deep
learning architectures, such as the x-vectors [10], are used. The final
decision relies either on the cosine [9, 3] or the PLDA [11] distance.
The overall process is illustrated in Fig. 1.

argminj[d(xi,sj)]

Fig. 1: State-of-the-art continuous speaker identification system:
The speech signal is segmented uniformly and each segment x; is
compared against all the available speaker profiles {s;} ;\7:1 accord-
ing to a distance metric d(-,-). A speaker label is assigned to each
x; minimizing this metric.

This approach poses some potential problems. First, uniform
segmentation introduces a trade-off error related to the segment
length: segments need to be sufficiently short to safely assume
that they do not contain multiple speakers but at the same time it
is necessary to capture enough acoustic information to extract a
meaningful speaker representation. Further, the speaker embeddings
are usually extracted from a network trained to distinguish speakers
among thousands of candidates [10]. However, a different level of
granularity in the speaker space is required, since only a small num-
ber of participants is typically involved in an interactive meeting
scenario. Also, the distance metric used is often heuristic and/or
dependent on certain assumptions which do not necessarily hold,
e.g., assuming Gaussianity in the case of PLDA distance [11]. Fi-
nally, the audio chunks are treated independently and any temporal
information about the past and future is simply ignored.

In this work, a data-driven, memory-based approach is proposed
addressing some of the aforementioned challenges. Data-driven
techniques perform remarkably well on a wide variety of tasks [12];
traditional architectures, though, may fail when the problem involves
relational information between observations [13]. Speaker identifi-
cation can be seen as a member of this class of tasks, since the final
decision depends on the distance relations between speech segments
and speaker profiles. Herein, the Memory-Augmented Neural Net-
works (MANNSs) [14, 15] are proposed bridging the performance
gap. Based on the success of MANNS on several problems requiring
relational reasoning and specifically using the Relational Memory
Core (RMC) [13], we build a memory-based network for the task of



continuous speaker identification in meeting scenarios. While com-
pared to the baseline approach, we show consistent improvements
in performance.

2. METHOD

2.1. MANNs and RMC

The main concept of MANNSs is augmenting a recurrent neural
network with a memory matrix M € R@*¥ consisting of Q P-
dimensional memory slots. The main architecture, called the con-
troller, decides how to update the memory through attention mech-
anisms using read and write heads (Fig. 2). The entire system is
differentiable, consequently it can learn a task-specific organization
of the memory in a supervised way through gradient descent [16].
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Fig. 2: Graphical illustration of how a MANN operates through time.
The memory matrix M here consists of 3 memory slots {m; }i_;.

Several implementations of this class of networks have been
proposed in the literature, e.g., [15, 17]. For our task, the frame-
work introduced in [13] is used, where the controller of the network
is embedded into a Long Short-Term Memory (LSTM) cell and is
called “Relational Memory Core” (RMC). RMC controls the mem-
ory updates through a self-attention mechanism [18] in a way that
the memory matrix dimensions remain constant. Each time a new
observation is presented, self-attention allows each memory to at-
tend to that observation, as well as to all the other memories, before
being updated, so that cross-memory relations are encoded.

2.2. RMC-based architecture for speaker identification

RMC-based networks have shown good performance on several
problems [13], including the “n™ farthest task”, where the goal is to
find the n'™ farthest vector from the m™ element in a given sequence
of vectors. Assume we are given a particular audio segment of a
meeting x; and a set of profiles {s; };-Vzl corresponding to the N
participants in the meeting. Under the n' farthest task notation,
we construct the sequence S; = {x;, 51, 82, , Sn } and we view
speaker identification as the problem of finding the closest element
to x; in the sequence S;. In more detail, a sequence of vectors .S; for
each audio segment x; of the input audio signal is passed through
an RMC-based recurrent layer, as in Fig. 3. The output of this layer
goes through a fully-connected Multilayer Perceptron (MLP) with a
softmax inference layer returning the label I; € {1,2,--- , N}; that
is the one maximizing the probability P [I; = j|z;, {s;}/=,]. Intu-
itively, the RMC projects each element of the input sequence onto
the “memory space” and the network learns some local data-driven
distance metric, sorts the resulting distances, and finds the profile
that yields the minimum distance.

Note that N is a prefixed maximum number of speakers within a
meeting that the network can handle. Given a sequence with N < N
profiles, the remaining N — IV outputs of the softmax layer are ex-
pected to be close to zero. To that end, the network is trained with
variable length sequences, providing training examples with all the
expected numbers of participants.

As shown in Section 4, the proposed architecture needs a large
number of training sequences, containing many speaker profiles.
The network is prone to overfitting when the in-domain meeting
data are limited. Instead, an out-of-domain dataset can be used to
construct speaker profiles and generate sequences of speech seg-
ments and random profiles’. In the case when multiple training
sequences contain the same speaker profiles, e.g., long real-world
meeting data are used during training, it is necessary to steer the
network to learn distance relations and not specific positions of the
profiles within the sequences. For that reason, the profiles {s;} ;-V:l
of each sequence are randomly permuted during training.
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Fig. 3: Unrolled recurrent network for continuous speaker identifi-
cation. x; represents a speech segment and {s; }évzl are the profiles
of the N speakers appearing in the recording.

2.3. Incorporating temporal information

As mentioned in the Introduction, one of the challenges of the tra-
ditional approaches is the lack of temporal information. However,
adding temporal context in the proposed approach is straightforward,
by constructing the input sequences while including the information
from neighboring segments. For example, to identify the speaker
profile that corresponds to z; with a temporal context of 1, we would
use the sequence {;_1, T, Tiy1, 51,82, , SN}, where {s; }évzl
are the candidate speaker profiles.

Temporal continuity is a well-known issue at the decision level
as well since it is highly improbable that isolated short segments
correspond to some speaker in the middle of an utterance assigned
to another speaker. Within the diarization community, this is often
addressed through Viterbi or Variational Bayes resegmentation [19,
20]. For this work we apply a simple smoothing filter of the trajec-
tory of the predicted speaker labels through median filtering. Simi-
larly, a Hidden Markov Model (HMM) could be introduced for this
trajectory smoothing.

3. DATASETS

The publicly available AMI corpus [21] consists of meeting data,
either occurring naturally or following a scripted scenario. For our
experiments we use the scripted meetings with 4 speakers each, with
both close-talk and far-field audio available, giving us 31 scenar-
ios. Each scenario consists of 4 meetings happening throughout a

2The only constraint being that the ground truth profile corresponding to
a segment should be included in the training sequence.



day: the first set of meetings is used for the speaker profile estima-
tion (totally 8.0 h ignoring silence), the second and third for training
(35.5 h), and the fourth for evaluation (17.1 h). We refer to this eval-
uation set as the seen one, since the speakers are seen during train-
ing. An additional evaluation set with unseen speakers is used,
consisting of 6 meetings (4.1 h) — while 6 more meetings (3.8 h)
with the same speakers are used for their profile extraction. To re-
semble real-world conditions, far-field audio is used for training and
evaluation, while the profile estimation is based on the close-talk mi-
crophones, as would normally be done during the enrollment phase.

To introduce more speaker variability during training, we addi-
tionally use data from VoxCeleb 1 and 2 [22, 23]. All the speakers
with more than 6 utterances each are kept in, resulting in a subset
of 6,490 speakers. For each speaker, 3 utterances are randomly
selected for the profile estimation (totalling 383.3 h) and the rest
(2184.9h) are used for training.

The method is also evaluated on 9 real meetings recorded within
Microsoft, with a circular microphone array [24]. The seven chan-
nels of the array are combined through a differential beamformer,
processing the beam output with the highest energy. The number
of speakers in those meetings (total length of 4.6 h) ranges from 4
to 15 and all the speakers had been already enrolled while reading
short text excerpts with a close-talk microphone.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

The ground truth Voice Activity Detection (VAD) segmentation as
provided by the available human-generated transcripts is used, while
ignoring the speaker labels. Consecutive speech segments with an
in-between silence shorter than 0.5 sec are now merged. This seg-
mentation scenario will be noted as the oraclevad, as opposed
to the oraclespk, where the initial speaker label info is also in-
cluded. The main difference between these two scenarios is that seg-
ments in oraclevad may contain more than one speakers, while
each segment in oraclespk contains a single speaker. While gen-
erating the training and evaluation sequences, a sliding analysis win-
dow with length equal to 1.5sec is used for the x-vector extrac-
tion. The window shift is 0.75sec for the AMI and the internal
meeting dataset, and 10 sec for the VoxCeleb dataset. This process
creates 160K training examples for AMI and 841K subsegments
for VoxCeleb. A 512-dimensional x-vector is generated per win-
dow, using the pretrained VoxCeleb model® provided by the Kaldi
toolkit [25]. The x-vectors are decorrelated via an LDA projection
(after which we keep 200 dimensions) and are further mean- and
length-normalized [11]. A speaker profile is estimated as the per
speaker mean of all the x-vectors estimated on the available speaker-
homogeneous segments, in the oraclespk scenario.

The memory matrix has (N + 1) 2048-dimensional memory
slots, where NN is the maximum number of speakers the network ex-
pects to see. The MLP component consists of 4 fully connected lay-
ers of 256 neurons each. The network is built using TensorFlow [26]
and the Sonnet library®.

In the case of oraclespk segmentation, the evaluation metric
is based on the window-level (subsegment-level) classification ac-
curacy. For the oraclevad segmentation scenario, we report the
Speaker Error Rate (SER) as estimated by the NIST md-eval.pl
tool, with a 0.25 sec-long collar, while ignoring overlapping speech

3https://kaldi-asr.org/models/m7
“https://github.com/deepmind/sonnet

segments. The system described in Fig. 1 using the cosine distance
provides the baseline performance.

4.2. Results on AMI

First, the system is trained and evaluated on the AMI corpus using
the oraclespk segmentation. Besides the baseline and the RMC-
based systems, a third one, replacing the RMC-based layer of Fig. 3
with an LSTM layer, is also evaluated. The RMC appears captur-
ing the desired distance information better than the LSTM, but both
networks are outperformed by the baseline on the unseen-speakers
scenario, as shown in Fig. 4. In particular, the performance of the
baseline system is practically the same for all testing conditions (i.e.,
seen vs. unseen). This is expected as the system is based solely
on the cosine distances without any supervision. On the contrary,
the behavior of the recurrent networks appears quite different with
a big performance gap between the seen and unseen evaluation
sets. A possible explanation is that the networks overfit to the train-
ing speakers and fail to generalize well. Since the LSTM-based net-
work performs substantially worse in the unseen conditions than
the RMC-based one, we henceforth use only the latter.
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Fig. 4: Classification accuracy on AMI for the seen and unseen
evaluation sets with oraclespk segmentation. Both the LSTM-
and RMC-based networks are trained on AMI.

To avoid overfitting during training because of the limited num-
ber of training speakers in AMI, we decided to use randomly gener-
ated training sequences from VoxCeleb, as described in Section 2.2.
Note here that the speaker profiles are always estimated on clean
audio, even when the VoxCeleb training recordings are distorted by
reverberation and noise to simulate the meeting environment. As
observed in Table 1, by including the VoxCeleb dataset for train-
ing, thus incorporating greater variability in the speaker acoustic
characteristics, the performance becomes comparable to the baseline
system for the unseen evaluation set. Further distortion, simulat-
ing real-world conditions, yields additional improvements in perfor-
mance. Finally, incorporating temporal context (last row of Table 1)
gives further substantial improvements.

Up to this point all sequences for training and evaluating have
a fixed number of speakers (equal to 4). A more realistic system,
used especially on meeting data, should support a variable number
of participants. Thus, we now train the system with variable-length
sequences, with or without context, and in Table 2 we report the re-
sults when it is still evaluated on AMI (4 speakers). As expected
from the analysis and results of the previous experiments, adding
context leads to consistent performance improvements. In the case
when there is not temporal information, an additional observation is
that, as the range of the number of speakers in the training sequences
increases, there is a decreasing trend in the classification accuracy.
However, comparing the columns 1 and 4 in Table 2, it seems that



system training set | acc (%)
cos - 68.68
AMI 60.00
VoxCeleb clean 68.15
RMC VoxCeleb reverb 70.25
VoxCeleb reverb+noise 71.90
RMC & context (1) | VoxCeleb reverb+noise 73.86

Table 1: Classification accuracy on AMI for the unseen eval set
with oraclespk segmentation, when the system is trained on dif-
ferent training sets, with or without context.

adding context not only improves the performance, but also makes
the system more robust, when this is trained on wider ranges of se-
quence lengths.

training seq

length ‘ 4 spks | 4-6 spks | 2-9 spks | 4-15 spks
w/o context | 71.90 71.94 70.84 69.66
with context | 73.86 73.77 72.67 73.42

Table 2: Classification accuracy (%) on AMI for the unseen
evaluation set with oraclespk segmentation, when the system is
trained on VoxCeleb (with added noise and reverbaration), with diff-
ferent ranges of sequence lengths.

4.3. Results on internal meetings

The system trained on VoxCeleb sequences of 4-15 speakers (last
column of Table 2) is also evaluated on the 9 internal meetings,
where the number of participants varies. Both the oraclevad
and the oraclespk segmentation scenarios are investigated. Once
again, the memory-based network yields superior performance com-
pared to the baseline (Table 3) especially when temporal information
from the neighboring subsegments is added.

| cos | RMC | RMC & context
oracleva(?l - SER (%) 20.95 | 18.56 11.69
lower is better
oraclespk —acc (%) ‘ 70.66 ‘ 72.51 ‘ 79.97

higher is better

Table 3: System evaluation on the internal Microsoft meetings with
different initial segmentation approaches.

The relative performance gain when adding the temporal context
to the system is substantially larger, compared to the results on the
AMI meetings (Table 2). This behavior can be partially explained
by the inherent differences in the acoustic conditions between the
two datasets. For instance, about 16% of the speaking time in the
unseen AMI evaluation set is overlapping speech, while the cor-
responding percentage for the internal meetings is about 7%. Sim-
ilar discrepancies were observed with regards to the frequency of
speaker change points. As a consequence, it is more probable that
neighboring segments of the internal meeting recordings contain in-
formation about the same speaker, thus boosting the performance
when jointly provided to the network.

4.4. Smoothing at the decision level

Finally, we investigate the effect of temporal continuity on the output
decisions by introducing median filtering. It is shown (Fig. 5) that a
short median filter of a few taps can improve the overall performance
for both datasets. Similar patterns are observed both for the baseline
and for the memory-based approach. Even though the results are
also improved for the RMC-based network, trained with temporal
context from neighboring segments, the relative improvements are
substantially smaller. We have concluded that adding temporal con-
text to the network partially acts like a data-driven smoothing filter.
Such a smoothing seems to be more effective than applying a post-
processing filter (in our case median filter). This becomes apparent
from the fact that the RMC-based network without added context is
always outperformed by the network with added temporal informa-
tion, even if no post-processing trajectory smoothing is applied to
the latter (median filter length = 1 tap).

Overall, the minimum SER achieved with the RMC-based archi-
tecture including context is 7.23% for the AMI data (median filter
length = 3 taps) and 10.09% for the internal meetings (median filter
length = 5 taps). The cosine-based system without median filter-
ing yields a SER equal to 11.91% and 20.95%, respectively, which
translates to a relative SER reduction of 39.29% and 51.84%.
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Fig. 5: SER as a function of the post-processing median filter length
for the two evaluation datasets with oraclevad segmentation. The
RMC-based network is trained on sequences of 4-15 speakers.

5. DISCUSSION AND FUTURE WORK

Herein, we have proposed a system suitable for the task of contin-
uous speaker identification in meeting scenarios. This is based on
a recurrent memory network which is capable of modeling the dis-
tance relations between observations; that is between speaker pro-
files and speech segments. We evaluated our approach on two cor-
pora featuring conversational business interactions under different
conditions. The proposed system yields consistent improvements in
performance, when compared to a baseline system depending on the
cosine distance metric. We have additionally emphasized the im-
portance of incorporating temporal context both at the feature and
the decision level, as well as the beneficial effects of using a train-
ing dataset with a large variety of speakers, and with environmental
conditions matching the testing conditions, even if artificially. Fol-
lowing our best configuration, we achieved a SER relative reduction
of 39.29% for the AMI corpus and 51.84% for the internal Microsoft
meetings, when using oracle VAD information.

A potential extension of the current work will focus on better
context modeling — e.g. incorporating transition probabilities be-
tween the various speakers — and on alternative memory-based ar-
chitectures, which can generalize to the problem of diarization, cap-
turing the profile information on the fly.
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