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ABSTRACT

The language patterns followed by different speakers who
play specific roles in conversational interactions provide valu-
able cues for the task of Speaker Role Recognition (SRR).
Given the speech signal, existing algorithms typically try
to find such patterns in the output of an Automatic Speech
Recognition (ASR) system. In this work we propose an alter-
native way of revealing role-specific linguistic characteristics,
by making use of role-specific ASR outputs, which are built
by suitably rescoring the lattice produced after a first pass of
ASR decoding. That way, we avoid pruning the lattice too
early, eliminating the potential risk of information loss.

Index Terms— speaker role recognition, speech recogni-
tion, language model, lattice rescoring

1. INTRODUCTION

Speaker Role Recognition (SRR) is defined as the classi-
fication task of mapping a speaker-homogeneous segment
(speaker turn) to an element of a predefined set of roles,
where a role is characterized by the task a speaker performs
and the objectives related to it. Typical examples of conver-
sational interactions between individuals with specific roles
are in business meetings [1], broadcast news programs [2, 3],
psychotherapy sessions [4, 5], or press conferences [6].

In order to address the problem of SRR, appropriate fea-
tures which capture distinguishable patterns between the dif-
ferent roles have to be extracted. Such patterns can be found
in the acoustic [7], lexical [8], prosodic [1], or structural [9, 6]
characteristics of the speech signal, with the importance of
each modality being task-specific. For instance, it is desired
that a psychotherapist speaks less than the client, an inter-
viewer is expected to use more interrogative words than the
interviewee, etc. However, it seems that the language of-
ten carries the most important information for the problem in
hand [10, 2, 1, 5] and is more robust to unseen conditions (e.g.
different speakers) [11], which is the reason why a great por-
tion of the research efforts has been focused on studying and
exploiting the lexical variability between the speaker roles.

The first efforts in the field extract bags of n-grams to
represent the lexical information and use them as input fea-

tures to boosting algorithms or maximum entropy classifiers
[12, 13]. Boosting approaches have been also followed in
[10] and [1] to combine n-gram features with other modali-
ties, with the final classification decision taken either at the
speaker [10] or at the turn level [1]. In [14] the authors first
classify the types of questions posed by the different speakers
and use that information for the role assignment. Deep learn-
ing approaches have been explored in [11] where word em-
beddings are used as inputs to convolutional neural networks.
In [4] and [5] role-specific n-gram Language Models (LMs)
are built and SRR is converted into the problem of finding the
LM which minimizes the perplexity of a speaker turn or of all
the turns assigned to a specific speaker.

Although a bulk of the aforementioned studies use manu-
ally transcribed speech data to perform SRR, in a real-world
application the lexical information would become available
after an Automatic Speech Recognition (ASR) step [11, 4].
Moreover, in [15] the authors suggest that the quality of ASR
transcripts can be used to extract additional features carrying
complementary information in specific scenarios. In any case,
the ASR output is considered to be the best path of a system
that uses generic acoustic and language models.

In this work, we propose using role-specific ASR systems
each one of which gives a potentially different output together
with a corresponding cost. Then, after passing any given
turn through all the systems, we can assign to that turn the
role which corresponds to the system producing the minimum
cost. In particular, for this study, we create the role-specific
systems by rescoring the lattices generated by a generic ASR
with role-specific LMs, as explained in Section 2. That way,
we can exploit any information carried by the decoding lat-
tice before pruning it to find the best path. Based on similar
intuitions, lattice rescoring techniques have been previously
explored in [16] and [4] for binary classification problems in
the field of behavioral code prediction. Our method is evalu-
ated on dyadic interactions from the clinical domain, as well
as on multi-participant business meeting scenarios.

2. METHOD

Given a generic ASR system, the goal is to convert the gen-
erated decoding lattice for an input turn to multiple, role-
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specific versions, in such a way that there is one version which
reflects the speaker role corresponding to the particular turn.
We are doing this by rescoring the lattice N times, where
N is the number of roles, with role-specific LMs. Let’s as-
sume we have a background, out-of-domain n-gram LM G
and N role-specific LMs R1,R2, · · · ,RN corresponding to
the roles R1, R2, · · · , RN , which are trained using in-domain
data. First, we ensure that all the models which are going to
be used recognize the same vocabulary. We can efficiently do
so by interpolating the individual LMs to get the mixed mo-
dels G+,R+

1 ,R
+
2 , · · · ,R

+
N

[17]. By using the symbol � to
denote LM interpolation, the final models are expressed as

G+ = wgG � (1� wg)R̃ (1)

R+
i
= wgiG � wriRi � (1� wgi � wri)R̃i (2)

where

R̃ =
1

N

NM

i=1

Ri, R̃i =
1

N � 1

NM

j=1
j 6=i

Rj

and all the weights wg, wgi , wri are chosen to minimize the
perplexity of appropriate role-specific development corpora.

Given an input turn x, we first pass it through an ASR
system, trained with the LM G+, producing a decoding lat-
tice LG+(x). The lattice is then rescored with all the LMs
R+

j
, j = 1, 2, · · · , N to produce the lattices LR+

j
(x). Denot-

ing as cj(x) the LM-cost of the best path in LR+
j
(x), the role

assigned to x is Rm where m = argmin
j
cj(x). The process

is visually depicted in Fig. 1.

ASR
with G+

LG+(x)

rescore
with R+

1

x

...

LR+
1
(x)

best path

c1(x)

argmin
j

rescore
with R+

N

LR+
N
(x)

best path

cN (x)

rescore
with R+

j

LR+
j
(x)

best path

...

cj(x)

m
Rm

......

Fig. 1. Turn-level SRR by role-specific lattice rescoring.

The difference between this approach and the language-
based approach followed in [5] is that in the second case the
evaluation with respect to a role-specific LM would be done

using the final output of the ASR, as presented in Fig. 2. That
way, the lattice LG+(x) is pruned using a generic LM, which
can potentially lead to loss of valuable information for the
task of SRR. This is exactly the problem our approach tries to
avoid.
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Fig. 2. Turn-level SRR by evaluating the text with role-
specific LMs.

If the extra information of the speaker who uttered the
turn is available, after a speaker clustering step, then the role
assignment can be done more robustly at the speaker level in-
stead of the turn level [14, 5]. If we denote by Ti the set of
turns corresponding to the speaker Si, we can define the cost
of the speaker-role pair (Si, Rj) as c(Si|Rj) ,

P
x2Ti

cj(x).
Ideally, we would again like to assign to any speaker Si the
role Rm such that the cost c(Si|Rm) is the minimum among
all c(Si|Rj), j = 1, 2, · · · , N . However, assuming that there
is one-to-one correspondence between speakers and roles in a
speech document, which is the case for most practical appli-
cations, this criterion would fail, since there is no guarantee
that argmin

j
c(Sn|Rj) 6= argmin

j
c(Sm|Rj) for n 6= m.

Thus, in order to take such a constraint into account, we
are instead using Algorithm 1, which is a generalization of
the role matching criterion proposed in [18] for the 2-speaker
scenario, where the costs were perplexities. The algorithm
begins with the entire sets S̃ and R̃ of the available speak-
ers and roles and at every iteration it chooses the speaker Sk

such that a confidence metric Ck is the maximum among all
Ci, i = 1, 2, · · · , |S̃|. Then, it assigns to Sk the role Rlk that
minimizes the cost c(Sk|Rj), j = 1, 2, · · · , |R̃| and removes
Sk and Rlk from the available speakers and roles. The confi-
dence metric Ci is designed in such a way that the larger the
difference between the minimum cost and the rest of the costs
for Si is, the more confident we are about the role assignment
of the particular speaker.

3. DATASETS

We evaluate our method on two datasets featuring interac-
tions between individuals under different conditions. The first



Algorithm 1 Speaker-level SRR given costs for each
(speaker,role) pair.

Inputs: speakers S1, S2, · · · , SN

roles R1, R2, · · · , RN

costs c(Si|Rj)8i, j
S̃  {Si}Ni=1; R̃ {Ri}Ni=1

while S̃ 6= � do
for Si 2 S̃ do

li  argmin
m
c(Si|Rm), Rm2R̃

Ci  minn |c(Si|Rli)�c(Si|Rn)|, Rn2R̃\{Rli}
end for
k  argmax

i
Ci

assign Rlk to Sk

S̃  S̃ \ {Sk}; R̃ R̃ \ {Rlk}
end while

dataset, to which we will refer as the PSYCH corpus, is com-
posed of motivational interviewing sessions – a specific type
of psychotherapy – between a therapist (T) and a client (C)
and is collected from five independent clinical trials (ARC,
ESPSB, ESP21, iCHAMP, HMCBI) [19]. The second one is
the AMI meeting corpus [20] from which we are using the in-
dependent headset microphone (IHM) setup of the scenario-
only part. This is composed of meetings where each partici-
pant plays the role of an employee in a company; the project
manager (PM), the marketing expert (ME), the user interface
designer (UI), and the industrial designer (ID).

The two datasets are split into training, development and
test sets in such a way that there is no speaker overlap be-
tween them. For the AMI corpus we follow the scenario-only
partition which is officially recommended1. For the PSYCH
corpus, since the client IDs are not available for the HMCBI
sessions, the partitioning is done under the assumption that it
is highly improbable for the same client to visit different ther-
apists in the same study [5]. In both cases, we use the manu-
ally derived segmentation. The two datasets are presented in
Tables 1 and 2.

PSYCH-train PSYCH-dev PSYCH-test

#sessions 74 44 25

dur-T 26.43 h 15.23 h 7.34 h
dur-C 23.29 h 12.17 h 7.54 h

Table 1. Size of the PSYCH dataset. The durations are cal-
culated based on the manual turn boundaries.

In order to train the required LMs we use the training parts
of the PSYCH and AMI corpora, as well as the Fisher En-
glish corpus [21] and the transcribed therapy sessions pro-
vided by the Counseling and Psychotherapy Transcripts Se-

1http://groups.inf.ed.ac.uk/ami/corpus/datasets.
shtml

AMI-train AMI-dev AMI-test

#meetings 98 20 20

dur-PM 16.00 h 2.95 h 3.93 h
dur-ME 10.22 h 2.61 h 2.51 h
dur-UI 9.71 h 2.26 h 1.79 h
dur-ID 11.03 h 2.02 h 2.15 h

Table 2. Size of the AMI dataset. The durations are calcu-
lated based on the manual turn boundaries.

ries2 (CPTS), as described in Section 4. The size of the cor-
responding vocabularies and the total number of tokens are
given in Table 3.

PSYCH-train AMI-train Fisher CPTS

|voc| 8.17K 8.54K 58.6K 35.6K
#tokens 530K 479K 21.0M 6.52M

Table 3. Size of the vocabulary and total number of tokens in
the corpora used for LM training.

4. EXPERIMENTS AND RESULTS

First, we train all the necessary LMs, which are 3-gram
models with Kneser-Ney smoothing. The generic LM G is
trained using the Fisher English corpus. For the AMI cor-
pus, the 4 role-specific LMs RPM ,RME ,RUI ,RID are
trained using only the turns belonging to the corresponding
roles in the training set. For the PSYCH corpus, we addi-
tionally use the CPTS sessions and get the role-specific LMs
RT = woTRT,CPTS � (1 � woT )RT,PSY CH and similarly
for RC . The mixing weights woT and woC are optimized so
that the perplexity of the turns of the corresponding roles in
the development set is minimized. Once we have those LMs,
we create the mixed versions according to equations (1) and
(2), where all the appearing mixing weights are again opti-
mized to minimize the perplexity of the development corpora.
For the optimization of wg , the corresponding development
corpus is the union of all the role-specific development cor-
pora for the dataset we are working with. The LM training
and weight optimization is done with the SRILM toolkit [17].
The size of the final mixed vocabulary is 69.5K for the experi-
ments with the PSYCH corpus and 59.6K for the experiments
with the AMI corpus, while the phonetic representation of
those words is given by the CMU dictionary3.

The ASR decoding is done with the Kaldi speech recog-
nition toolkit [22] using Kaldi’s pre-trained ASpIRE acoustic

2https://alexanderstreet.com/products/
counseling-and-psychotherapy-transcripts-series

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict



model4. The word insertion penalty and the LM weighting
factor used during decoding are chosen to minimize the Word
Error Rate (WER) on the development set.

The evaluation metric used for the final role assignment is
the weighted Misclassification Rate (MR), defined as

MR =
#misclassified frames

total #frames
=

P
k
I(Rk 6= R̂k)dkP

k
dk

where the summation is over all the speaker turns, Rk is the
role assigned by the algorithm, R̂k is the reference role, dk is
the duration of the k-th turn and I(·) is the indicator function.

4.1. Turn-level SRR

In Table 4 we present the results using our method (lm-resc)
for turn-level (tl) SRR, as shown in Fig. 1, as well as using
the approach shown in Fig. 2 (lm-asr) where the cost c0

j
(x)

is the log-likelihood of the turn x given the LM R+
j

.

lm-resc-tl lm-asr-tl baseline

PSYCH 23.58 10.75 50.67
AMI 64.70 63.40 62.22

Table 4. MR (%) for turn-level SRR.

As we can see, both lm-resc-tl and lm-asr-tl fail
to beat the baseline classifier which always chooses the ma-
jority class (from the training set) for the case of AMI cor-
pus. For the 2-role problem in PSYCH corpus this is not the
case, but still lm-asr-tl outperforms lm-resc-tl. This
is because the corpora feature conversational interactions and
thus, prior to speaker clustering, utterances are broken into
very short speech segments. Each individual segment con-
tains insufficient observations to infer speaker role, and since
all decisions are independent, that increases error. Such inac-
curacies cancel out when we exploit the aggregate score for
all the turns of a speaker as we will see in the next Subsection.

4.2. Speaker-level SRR

Here, the final decision of the role assignment is taken at
the speaker level, according to Algorithm 1, which means
that a speaker clustering step is necessary. To that end, a
Bayesian Information Criterion (BIC) - based Hierarchical
Agglomerative Clustering (HAC) is employed on top of an
energy-based voice activity detector at the frame level, as ex-
plained in [5]. In order for the clustering to make sense in
the case of the AMI corpus, we downmix the 4 headset mi-
crophones into one audiofile per meeting. As observed in
Table 5, our method yields improved results, outperforming
both lm-asr-sl and the turn-level approaches (Table 4).
Of course, the final performance depends on the performance
of the clustering algorithm used.

4http://kaldi-asr.org/models/m1

lm-resc-sl lm-asr-sl BIC-HAC

PSYCH† 0.00 7.46 –
PSYCH 4.41 5.83 4.08
AMI† 29.46 55.52 –
AMI 46.16 60.94 15.63

Table 5. MR (%) for speaker-level SRR and for speaker clus-
tering (BIC-HAC). † denotes the use of ground truth speaker
clustering information.

4.3. Effect on speech recognition accuracy

Finally, we want to explore whether the role-specific lattice
rescoring can lead to improved results for the task of ASR
apart from SRR. To that end, for every turn we assume that the
lexical information is given by the best path of the rescored
lattice corresponding to the role that was assigned by our al-
gorithm to that turn. The results in Table 6 show that this
approach, following our per-speaker role assignment, can in-
deed slightly improve the ASR performance. The slight dif-
ference between the WER of the generic ASR model and the
combination of the rescored ones, together with the substan-
tial improvements in SRR performance (Table 5) suggest that
even small role-specific improvements in the text produced by
the ASR can be of high value for a reliable role identification.

lm-resc-tl lm-resc-sl generic

PSYCH 37.84 37.54 37.99
AMI 29.35 29.27 29.29

Table 6. WER (%) using the best path of the generic ASR or
the best paths after the role-specific lattice rescoring and the
SRR at the turn and at the speaker level.

5. CONCLUSIONS AND FUTURE WORK

We presented an algorithm which rescores the lattices pro-
duced by an ASR system with role-specific LMs in order to
exploit the linguistic information in a more robust way for
the task of SRR. We experimented with approaches taking
the final decision both at the turn and at the speaker level and
we identified that the second case leads to more reliable re-
sults. Our future efforts will focus on extending the proposed
ideas to accommodate the scenario where the role of the same
speaker changes during the recording, or multiple speakers
play the same role, where the assumption of one-to-one cor-
respondence between roles and speakers would not hold.
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[2] Géraldine Damnati and Delphine Charlet, “Multi-view Ap-
proach for Speaker Turn Role Labeling in TV Broadcast News
Shows,” in Twelfth Annual Conference of the International

Speech Communication Association, 2011.

[3] Benjamin Bigot, Corinne Fredouille, and Delphine Charlet,
“Speaker Role Recognition on TV Broadcast Documents,” in
First Workshop on Speech, Language and Audio in Multime-

dia, 2013.

[4] Bo Xiao, Chewei Huang, Zac E Imel, David C Atkins, Panayi-
otis Georgiou, and Shrikanth S Narayanan, “A Technology
Prototype System for Rating Therapist Empathy from Audio
Recordings in Addiction Counseling,” PeerJ Computer Sci-

ence, vol. 2, pp. e59, 2016.

[5] Nikolaos Flemotomos, Pavlos Papadopoulos, James Gibson,
and Shrikanth Narayanan, “Combined Speaker Clustering and
Role Recognition in Conversational Speech,” in Interspeech,
2018.

[6] Yanxiong Li, Qin Wang, Xue Zhang, Wei Li, Xinchao
Li, Jichen Yang, Xiaohui Feng, Qian Huang, and Qianhua
He, “Unsupervised Classification of Speaker Roles in Multi-
Participant Conversational Speech,” Computer Speech & Lan-

guage, vol. 42, pp. 81–99, 2017.

[7] Benjamin Bigot, Julien Pinquier, Isabelle Ferrané, and Régine
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