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Abstract
Speaker Role Recognition (SRR) is usually addressed either as
an independent classification task, or as a subsequent step after a
speaker clustering module. However, the first approach does not
take speaker-specific variabilities into account, while the second
one results in error propagation. In this work we propose the in-
tegration of an audio-based speaker clustering algorithm with
a language-aided role recognizer into a meta-classifier which
takes both modalities into account. That way, we can treat sep-
arately any speaker-specific and role-specific characteristics be-
fore combining the relevant information together. The method
is evaluated on two corpora of different conditions with inter-
actions between a clinician and a patient and it is shown that it
yields superior results for the SRR task.
Index Terms: speaker role recognition, speaker clustering,
multimodal classification, meta-classifier

1. Introduction
Speaker Role Recognition (SRR) is the task of assigning a spe-
cific role to each speaker turn (speaker-homogeneous segment)
in a speech signal. This task plays a significant role in numerous
areas, such as information retrieval [1], audio indexing [2], or
social interaction analysis [3]. Most of the research efforts have
been focused on identifying roles in broadcast news programs or
talk shows [4–7] , while there have been also works dealing with
meeting scenarios [8], conferences [9], medical discussions be-
tween domain experts [10], and psychotherapy sessions [11].
There have been presented both supervised [1,7,12,13] and un-
supervised [9, 14] methods.

The approaches towards dealing with the problem of SRR
can be distinguished on the basis of whether the final decision
is made at the turn level or the speaker level. In the former
case (Figure 1a), a classifier is built where the input space is the
space of speaker turns with no speaker information available.
In a real-world application, those turns are obtained through a
speaker change detection algorithm. The first works in the field
use boosting algorithms [1] and statistical methods [1, 15] to-
wards this classification task. In [8] lexical, prosodic, structural,
and dialog act information is combined also through boost-
ing algorithms. Audio-based and language-based classifiers are
combined in [5] with early or late fusion through a logistic re-
gression model. Finally, deep learning techniques have been
more recently applied [13] in order to learn turn embeddings.

In the case of speaker-level SRR (Figure 1b), the classifier
is built in two steps, the first being a Speaker Clustering (SC) al-
gorithm, or a diarization system in the more general case, where
the turns are grouped into same-speaker clusters in an unsuper-
vised way and then each cluster is assigned a specific role. In
this line of work, [16] uses a social network analysis approach
taking into consideration relational data across different speak-
ers, while a hierarchical classification system is proposed in [2]
and [12]. The effect of various modalities on the final perfor-
mance of SRR when using boosting algorithms is investigated
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Figure 1: Two approaches for Speaker Role Recognition.

in [17]. In [18] the authors study the relation between speech
spontaneity levels and speaker roles, using a classifier based
on boosting methods with decision stumps. Question types are
used as features in [4], with results reported both at the speaker
and the turn level.

In contrast to Speaker Identification (SID), the features to
be extracted for SRR have to exploit characteristics that may
be shared between different individuals, since the same role
can be shared between various speakers. However, knowledge
of speaker-specific information can lead to better classification
results (e.g. [4]), which is the reason why many SRR related
works operate at the speaker level, employing a SC step. A ma-
jor drawback of this piped approach, presented in Figure 1b, is
that no matter how good the subsequent classifier is, any po-
tential error in the SC algorithm is propagated and the overall
performance is upper-bounded by the performance of the SC
module. Thus, it is desirable to effectively combine speaker-
specific and role-specific information without such problems.

To that end, the final role recognition decision in [6] is taken
at the turn level, but the speaker information, available after a
diarization step, is taken into account during the feature extrac-
tion. However, that information is only used for the extraction
of structural features (such as average time between two turns
of the current speaker). Those are combined with turn-level
prosodic features and the final classification is made using Con-
ditional Random Fields (CRFs). It is reported that when using
oracle speaker segmentation, this combination does not lead to
improved results over the independent usage of the two differ-
ent feature sets. A hybrid hierarchical approach is presented
in [19], where the SC output is used to distinguish at the speaker
level a specific role from all the others, which are then classi-
fied at the turn level. However, this approach has been proposed
specifically for application in broadcast news shows, taking into
consideration different variabilities between the anchors and the
reporters on the one hand and between the reporters and others
on the other.



In this work, we present an alternative generic framework to
combine a SC algorithm with a turn-level supervised role clas-
sifier, in such a way that both speaker-specific and role-specific
information is taken into account for the final decision. We eval-
uate our method on the binary problem of patient-clinician in-
teractions using manually extracted speaker turns. However, the
framework presented is generalizable to an arbitrary number of
speakers, under the assumption of the existence of a one-to-one
correspondence between speakers and roles in a single speech
document.

2. Method
2.1. General Framework

We propose the combined architecture presented in Figure 2,
where the SC and role recognition modules work in parallel and
their output is fed as input to a meta-classifier.
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Figure 2: Proposed approach for Speaker Role Recognition.

We assume that we know a priori the number of speakers
in the speech document, say N , and that there is a one-to-one
correspondence between the set of speakers {Si}Ni=1 and the
set of roles {Ri}Ni=1. We treat the outputs of the two modules
as continuous-valued scores assigned to each speaker/role label.
Thus, the output of the SC algorithm is the sequence of tuples
(p1i)

N
i=1, (p2i)

N
i=1, · · · , (pTi)

N
i=1, such that the k-th turn would

be assigned the speaker label Sm iff pkm = maxi pki. Simi-
larly, the output of the role recognition module is the sequence
of tuples (q1i)

N
i=1, (q2i)

N
i=1, · · · , (qTi)

N
i=1, such that the k-th

turn would be assigned the role label Rm iff qkm = maxi qki.
In that way, for each turn we have 2N scores corresponding to
the N speakers/roles. Those are treated as input features for the
classifier of the last step of the architecture.

Since there is not a natural correspondence between the two
systems outputs, it is necessary to find the optimal matching be-
tween the two sets of labels {Si}Ni=1 and {Ri}Ni=1. This is a
standard step taking place in the more general case of diariza-
tion systems output combination [20, 21] or for the evaluation
of speaker clustering performance [22]. For a small N (which
is a realistic assumption for conversational settings), it is easy to
find this matching in an exhaustive way. Formally, if we denote
such a matching as the mapping M : {Si}Ni=1 → {Ri}Ni=1, the
optimal matching is defined as

M̂ = arg min
M

T∑
k=1

I(M(S′
k) 6= R′

k)dk

where S′
k ∈ {Si}Ni=1 and R′

k ∈ {Ri}Ni=1 are the labels as-

signed by the two modules to the k-th turn, I(·) is the indicator
function, dk is the duration of the turn, and T is the total number
of turns in the speech document.

2.2. Speaker Clustering Module

For the speaker clustering module we are using a simple
Bayesian Information Criterion (BIC)-based Hierarchical Ag-
glomerative Clustering (HAC) algorithm [23, 24]. At each step
of the HAC procedure we are using one Gaussian to model each
cluster, so that the distance metric, known as ∆BIC, between
two clusters x and y, with nx, ny members (frames) and with
covariance matrices Σx, Σy , respectively, is

∆BIC(x, y) =
1

2
(n log |Σ| − nx log |Σx| − ny log |Σy|)

− λd(d+ 3)

4
logn

where n = nx +ny , Σ is the covariance matrix if we merge the
clusters x and y, d is the dimensionality of the feature vector
representing each frame, and λ is a penalty factor (λ = 1 for
our experiments). At each step, the pair of clusters with the
minimum ∆BIC is being merged.

The speaker clustering in this work is purely based on the
acoustic information and as features we are using the 13 first
MFCCs for each frame. At the last step, we have one Gaus-
sian modeling each of the N speakers and the needed scores
for the turn are the per-frame log-likelihoods with respect to
each Gaussian averaged over the voiced frames of the turn. The
voiced frames are identified with a Voice Activity Detection
(VAD) algorithm, which is also applied at the initial step of the
HAC procedure, so that the constructed Gaussians model only
the voiced information for each speaker.

2.3. Role Recognition Module

We explore two different approaches for the role recognition
module, one language-based and one audio-based.

In order to build a language-based role recognizer to ex-
ploit the linguistic patterns that are potentially shared between
speakers with the same roles, we are using similar ideas as in
the role matching module presented in [11]. Since we treat role
recognition as a supervised classification task, we need a role-
labeled training set of speaker turns. On that set we train N
n-gram Language Models (LMs), one for each role. During the
test phase, we evaluate the perplexity of the turn to be classified
with respect to all the constructed LMs. The required scores to
be used as input to the meta-classifier are the N negative log-
perplexities.

Even though we are using the acoustic information in the
SC module, we are interested in exploring the hypothesis that
the exact same information has a predictive power over roles,
apart from speakers. Following a similar idea as in [5], we build
an Acoustic Model (AM) for each one of the N roles. The AM
for a role is a Gaussian Mixture Model (GMM) fit on the voiced
frames of all the turns available in the training set which are la-
beled with that role. The scores for the turn to be used during
the test phase are again, as in the case of the SC algorithm, the
N per-frame log-likelihoods with respect to each GMM aver-
aged over the voiced frames of the turn.

3. Datasets
For this work, we are evaluating our proposed method on two
different corpora from the psychology domain, featuring inter-



actions between a clinician and a patient. The first corpus is
composed of Motivational Interviewing (MI) sessions between
a therapist (T) and a client (Cl) collected from six indepen-
dent clinical trials (ARC, ESPSB, ESB21, CTT, iCHAMP, HM-
CBI) [25, 26]. We collectively refer to those sessions as the MI
corpus. In this study, we use 343 manually transcribed sessions.

The second corpus is comprised of Autism Diagnostic Ob-
servation Schedule (ADOS) assessments between a psycholo-
gist (P) and a child (Ch) being evaluated for a Pervasive De-
velopmental Disorder (PDD) [27]. In this study, we use 273
manually transcribed sessions, of minimum 2min duration.

There is a limited number of sessions where there are more
than two speakers involved. In such cases, we do not take into
account any turns not belonging to the clinician/patient for our
analysis. Additionally, there is a limited number of non-pure
speaker turns, in the sense that the manually annotated bound-
aries are not optimal and occasionally overlap. We chose to
include such turns in the analysis without any preprocessing,
since in a real-world setting (e.g. with automatic segmentation)
such problems are impossible to completely avoid.

Some descriptive analysis for the two datasets is presented
in Table 1. Unfortunately, the exact total number of different
clients is not available for the MI dataset. However, under the
assumption that it is highly improbable for the same client to
visit different therapists in the same study, and having partial in-
formation available about the client IDs, we made the train/test
split in a way that we are highly confident there is no over-
lap between speakers. Similarly, the exact total number of psy-
chologists is unknown for the ADOS corpus, but the data are
collected from two different clinics (in different cities) and we
assume that the same clinician does not work for both. So, the
data from one clinic is used for training and from the other for
testing.

Table 1: Descriptive analysis of the corpora used. mean dur
and std dur are the mean and standard deviation values of
the session duration. By dur-T/P and dur-Cl/Ch we de-
note the total duration of all the speaker turns labeled as
therapist/psychologist and client/child, respectively. By #T/P
and #Cl/Ch we denote the total number of different thera-
pists/psychologists and clients/children.

MI-train MI-test ADOS-train ADOS-test

#sessions 242 101 141 132
mean dur 27.24min 33.14min 3.67min 3.67min
std dur 14.40min 17.42min 1.34min 1.65min

dur-T/P 47.30h 26.35h 2.63h 2.52h
dur-Cl/Ch 52.96h 25.87h 2.97h 2.98h

#T/P 123 53 – –
#Cl/Ch – – 89 81

4. Experiments and Results
The two available datasets are split into train and test sets, as ex-
plained in Section 3, in a way that, with high confidence, there
are not overlapping speakers between the sets, in order to be
certain that the trained models indeed capture role-specific and
not speaker-specific information. The train set is only used to
build the LMs and AMs described in Section 2.3 corresponding
to the different roles.

The LMs are 3-gram models trained (and later evaluated)
using the SRILM toolkit [28] with manually derived transcrip-

tions of the recordings. In order to ensure a large enough vocab-
ulary that minimizes the unseen words during the test phase, we
are interpolating those models with a large background model–
namely with the pruned version of the 3-gram model of cantab-
TEDLIUM [29]–giving a weight of 0.9 to the domain-specific
LM and 0.1 to the background one.

The AMs are diagonal GMMs with 512 components, mod-
eling the frames of turns assigned to each role, where the frames
are represented by 13-dimensional MFCCs. During training, we
take into consideration only the voiced frames, by applying to
the initial speaker turns a simple, energy-based VAD algorithm,
as implemented in the Kaldi speech recognition toolkit [30].
The same VAD algorithm is applied during the evaluation, as
well as during the SC, as explained in Section 2.2.

As a meta-classifier we are using a binary linear Support
Vector Machine (SVM), since we are evaluating on binary prob-
lems. All the results are based on a 5-fold cross-validation
scheme on the data allocated for testing in each dataset, where,
as is the case for the initial train/test split, we are using all the
available meta-data information to minimize any possible over-
lapping of speakers between different folds. The reason we are
adopting this approach and do not use the training part of the
datasets is that we do not want to pipe data already seen by the
AMs and/or LMs to the SVM training.

As the evaluation metric of the SRR we are using the Mis-
classification Rate (MR), defined as [22]

MR =
#misclassified frames

total #frames
=

∑
k I(Rk 6= R̂k)dk∑

k dk

where the summation is over all the speaker turns,Rk is the role
assigned by the algorithm, R̂k is the groundtruth role and dk is
the duration of the k-th turn.

In this work we do not report results for the piped archi-
tecture presented in Figure 1b using an actual classification al-
gorithm as the second step of the pipeline. Instead, in Table 2
we give the best possible result with this architecture when us-
ing the SC algorithm that we have described. Using a perfect
classification algorithm for the SRR task at the speaker level,
which we denote as R†, the overall error of the system is al-
ways lower-bounded by the error of the SC algorithm itself. So,
the results reported in the SC+R†-piped column of the Table
are in fact the MRs of the SC algorithm.

Table 2: Misclassification Rates (%) of the SC algorithm, the
language-based recognizer (LM), and the audio-based recog-
nizer (AM), when used independently (only) or in a piped
(piped) or combined (comb) architecture for the task of SRR.
ByR† an optimal, 0-error classification algorithm is denoted.

SC+R†

piped
LM
only

SC+LM
comb

AM
only

SC+AM
comb

MI 3.59 9.49 2.76 35.45 3.66
ADOS 12.67 12.37 7.70 14.03 10.58

AM+LM
comb

SC+AM+LM
comb

MI 9.17 2.71
ADOS 8.02 5.98

The language-based and audio-based recognizers are eval-
uated when used independently (LM-only and AM-only) and
when used in the combined architecture presented in Figure 2



(SC+LM-comb and SC+AM-comb). The results are reported in
Table 2. As we can see, the LM-based approach has a strong
predictive power for both datasets, revealing differences in the
linguistic patterns between a clinical provider and a client or a
child with PDD. When this is combined with the SC algorithm
which captures the speaker-specific differences in a single ses-
sion, the results are considerably better, compared not only to
the independent classifiers, but also to the piped architecture.

On the other hand, the AM approach does not behave in
the same manner for the two datasets. As expected, the acous-
tic characteristics of the children as a whole are different than
those of the adult clinicians. This is reflected in the AM-only
results for the ADOS data, even though they are still worse
than the LM-only ones. This age distinction between the two
different groups of speakers does not exist in the MI dataset.
So, although it seems from the results that there is some non-
negligible acoustic variability between the clinicians and the
clients, the performance gap between the LM-only and the AM-
only approaches is much bigger for those data. When com-
bined with the SC algorithm the results are substantially better,
because the meta-classifier is affected by the more separated
scores which are the output of the SC module. This notion of
“separability” is visually depicted in Figure 3 where we show
how the outputs of the SC, LM, and AM modules are distributed
on the plane. It is of high interest that in the case of the ADOS
dataset, because of its very special nature, the exact same in-
formation (at the feature level) can be used to capture both role-
specific and speaker-specific variabilities in a way that if the two
modules are combined by our proposed architecture (SC+AM-
comb), they can improve the overall performance as if they car-
ried complementary information.

As a final experiment, we combine the outputs of the LM-
and the AM-based recognizers, again using the linear SVM
as the meta-classifier (AM+LM-comb) and we also combine
all the three constructed modules in an extended combined ar-
chitecture (SC+AM+LM-comb). In this latter case the meta-
classifier gets 3 · 2 (in the general case 3N ) inputs for each turn
to be classified. We note that the result of the optimal match-
ing between SC and LM was the same as in between SC and
AM, so we did not encounter any conflict. When compared
to the LM-only and the SC+LM-comb results, the addition of
the acoustic-based recognizer in the architecture does not lead
to any substantial improvements, as expected, for the MI data,
but does improve the performance of the system for the case
of the ADOS sessions. Overall, the relative error improvement
with our final system which follows the combined architecture
is 24.5% for the MI data and 52.8% for the ADOS data, when
compared to the piped architecture with an optimal recognizer.

5. Conclusions and Future Work
In this work we proposed a framework to incorporate speaker-
specific and role-specific information for the SRR task, by in-
dependently implementing an unsupervised SC algorithm and a
supervised turn-level role classifier, the output scores of which
are fed to a meta-classifier which gives a turn-level final de-
cision. By evaluating our method using speech signals from
dyadic interactions we showed that it yields superior results,
compared both to the independent use of turn-level classifiers
which do not take speaker-specific variabilities into account and
to systems that use speaker-specific information by applying SC
as a first step and predicting the output at the speaker level.

One drawback of our methodology is that it requires ad-
ditional data for the training of the meta-classifier. Moreover,
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Figure 3: Distribution of the scores which are the output of
the SC ((a),(b)), the LM-based recognizer ((c),(d)) and the AM-
based recognizer ((e),(f)) for the MI ((a),(c),(e)) and the ADOS
((b),(d),(f)) datasets. Each data point is a speaker turn with size
proportional to the turn length. 300 turns of the test set are
randomly shown for each dataset. xa and xt are the acoustic
and textual representation of a turn x. LMR and AMR are the
LM and AM corresponding to the role R. GR is the Gaussian
corresponding to the role R at the end of the SC and after an
optimal matching between speakers and roles.

in a real-world scenario, the speaker boundaries, as well as the
language-based features, would be extracted, at least at the eval-
uation phase, from diarization and Automatic Speech Recogni-
tion (ASR) outputs.

We are planning to apply this framework to multiple-role
databases by using multi-class meta-classifiers and to try more
sophisticated AMs, LMs, and SC techniques. Additionally, we
want to provide a rigid formulation of the framework that can
accommodate more than one SC and role recognition modules.

The final goal is to extend the framework in order to com-
bine speaker-specific and role-specific information for speaker
segmentation as well so that we can build a fully automatic “role
diarization” system.
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