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Abstract

Speaker Classification (SC) is an important issue in Speech and Language Processing. In this
work,various classification approaches are compared for text-based SC, applying the different techniques
in the scripts of the popular animated TV series South Park. In particular, two distinct problems are
adressed. Firstly, a binary problem is constructed where giving an utterance to the classifier, the de-
sired output is whether it has been said by one of the main characters of the series or not. Seconldy, a
multiclass problem is contstructed where the goal is to classify the four main characters of the series.
The best performance, in terms of the F} score, is achieved by the logistic regression algorithm which
yields F} = 0.6471 for the binary problem with and F; = 0.1434 for the multiclass problem.

1 Problem Statement & Goals

The aim of this project is to apply feature engineering and Machine Leraning techniques for text-
based Speaker Classification (SC), also known as Speaker Identification. The problem can be thought
of as an effort to find linguistic patterns that have the potential of distinguishing different utterances
with respect to the speaker they correspond to. The dataset used is the South Park Dialogue', which
provides more than 70896 lines (where each line is an utterance) of the popular animated TV series
South Park, annotated with speaker labels. The goal is to use commonly used language features in order
to predict the speaker of a specific utterance, by knowing what (s)he has said. By that perspective, it
is a supervised learning problem in the area of Natural Language Processing.

The dataset contains 70896 utterances from 3950 unique characters. Lots of the characters, however,
appear in just one episode or even speak just once, making it impossible for a system to be trained
to predict them. Additionally, an accurate and robust system would depend heavily on the language
features used. In order to avoid devoting most of the time looking for suitable sophisticated features,
since that would be out of the scope of this class, and to be able to compare different classification
methods, while preserving as much interpretability as possible, two ’lighter’ versions of the problem
were constructed and addressed. Out of all those characters appearing in the show, only 4 of them are
the main ones (Cartman, Stan, Kyle and Kenny)?. So, the first problem is a binary one, where the goal
is to predict whether an utterance has been said by a main character or not. The second problem uses
only the utterance from those 4 characters and the goal is to predict who is the character who said a
specific utterance. It is, thus, a multiclass classification problem with 4 classes.

The problems addressed are inherently difficult for a variety of reasons. First of all, significant pre-
processing of the available data is required, since just raw text is provided. Additionally, the n-grams,
which are the most commonly used language features for such tasks, lead to a very high-dimensional and
sparse feature space which requires careful handling. Finally, human language is one of the most compli-
cated mechanisms and trying to find distinguishable patterns between different users of this mechanism
is a really challenging task.

2 Prior & Related Work

I have worked on another project in the past[2], involving similar feature extraction techniques for
document classification. However, the application domain, as well as the classification approach, was
completely different.

"Mttps://www.kaggle.com/tovarischsukhov/southparklines
’https://en.wikipedia.org/wiki/South_Park
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3 Project Formulation & Setup

For both the problems addressed (binary and multi-class) the general steps followed are the same.
The overall procedure is summarized in Figure 1.
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5-fold cross-validation
Model-sel s (D lity Reduction) | ______ )u [multiclass problem]
with Multinomial Naive Bayes Classifier
[binary problem]

MULTICLASS PROBLEM

BINARY PROBLEM

Model Selection: <
- - Results on Test Set
type and strength of regularization

Model Selection:

Model Selection:
Results on Test Set A L
type and strength of regularization

Model Selection:

Results on Test Set minimum samples in leaves minimum samples in leaves Results on Test Set ;
and classification cost type and classification cost type
Model Selection: Model Selection:
€ Results on Test Set . A . . Results on Test Set >
maximum number of estimators maximum number of estimators

Linear SVM Linear SVM

Results on Test Set Model Selection:
[~ h strength of regularization

N Model Selection:

- Result: Test
strength of regularization 3 esults on Test Set

A
A

Compare Final Results

Compare Final Results

Figure 1: Flowchart of the project formulation and setup. All the ‘Model Selection” modules are based on
a b-fold cross-validation on the training set.

First of all, the entire dataset is split into training and test set based on a 80-20 split. It should be
noted that the initial dataset is different for the two problems. Specifically, just a subset of the data
is used for the multiclass problem, since only the utterances spoken by one of the main characters are
taken into consideration. The test set is held aside and all the subsequent computations are based on
the training set. The first step is to find the number (and type) of features to use. More details on
that module will be given in Section 4 and Subsection 5.1. This is done only for the binary problem
and the result obtained is also used for the multiclass problem. Ideally, this model selection would be
incorporated in the subsequent model selection schemes so that an optimal number of features would
be deduced for each classifier. However, it was decided to follow this approach in order to reduce the
overall complexity and to compare all the classifiers when applied on the same features.

Then, for each of the two problems, 4 different classifiers are applied and compared to each other:
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logistic regression, decision trees, adaboost with decision stumps, and linear Support Vector Machines
(SVMs). Each one of them has a number of parameters to be tuned and the tuning is done each time
through a 5-fold cross-validation. A brief mathematical formulation of the classifiers is given below.
In the case that the classifier is inherently targeted to binary classification problems, only the binary
formulation is given. The extension to the multiclass problem is done using the One-Vs-Rest approach.

The objective function for binary-class logistic regression can be differentiated depending on the reg-
ularization used. In this work, I;— and ly—regularization are applied and compared. The minimization
problem for the ls regularized logistic regression is formulated as

N
min%wTw+CZIOg {exp (—y; (x{ W +wo)) +1} (1)

W,Wo 1
1=

while for the [; regularized logistic regression the corresponding formula is

N
min ||w||; —|—C’Zlog {exp (—ui (x;frw—l—wo)) +1} (2)
W,Wwo

=1

where N is the number of training samples, y; € {—1,1}, and C is a parameter which affects the strength
of regularization (the smaller the value of C, the greater the regularization effects).
For the linear SVM the optimization problem is given as

N
I o
1 C : 3
w17111u1342w w + ZZ:;C (3)
such that y; (xiTerwo) >+1-¢ (4)
and ¢; >0, i=1,2,---,N (5)

The parameter C' which appears in equations (1), (2) and (3) needs to be tuned.

For the decision tree, the algorithm used is CART. In order to achieve an optimal performance of the
algorithm, an early stopping criterion usually needs to be applied, in order to avoid overfitting. In this
work, the approach taken involves the search for the optimal value of the minimum number of samples
M required in each leaf node of the tree. From that viewpoint, the algorithm does not split any node if
immeiatly after the split, the children are going to define an area in the feature space where less than
M samples exist. Apart from finding the best value for M, the model selection here also involves the
decision of which classification cost, between the Gini index and the cross-entropy, should be used.

Decision trees comprise an adaptive basis function model which usually yields non-robust results.
This is why we also try a boosting technique. Specifically, the algorithm applied is the Adaboost, where
the weak estimators are decision stumps, that is one-stage CART trees. The maximum number of weak
estimators used in the iterative procedure of the algorithm is again decided after a model selection
module.

4 Methodology

The dataset available includes 70896 lines of dialogue between different characters of South Park.
For the binary problem, the entire dataset is used, where each lines gets the label ‘main character’ or
‘not main character’. For the multiclass problem, only the 25434 lines corresponding to the 4 main
characters of the series are considered and each line gets the label ‘Cartman’, ‘Stan’, ‘Kyle’ or ‘Kenny’.
The number of samples corresponding to those classes are reported in Table 1.

First of all, for both probelms, the dataset is randomly shuffled and 80% is used for the training of the
various systems. The rest of the samples are held aside in order to be used for the final evaluation and
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character number of samples (lines)
Cartman 9774
Stan 7680
Kyle 7099
Kenny 881
not main character 45462

Table 1: Number of samples per class. For the multiclass problem, only the samples corresponding to the
4 main characters are used. For the binary problem, all the samples are used with the 4 main characters
being merged into one class.

the estimation of the out-of-sample performance. That process leaves us with 56717 training samples
for the binary probelm and 20348 training sampes for the multiclass problem.

The features which are going to be used are not known a priori, since initially only the raw text is
available. Maybe the most commonly used feature set for document representation is the set of n-grams,
calculating either the occurrences or the frequency of occurrence of each n-gram (sequence of n words).
It is obvious that is the general case the number of features is not known, since it depends on the training
set. So, if cross-validation is used at some point of the process, the feature extraction model has to be
fit at each fold in the new training set, because the words (or n-grams) existing in the particular set of
samples may be different than in other sets. In order to ensure that we compare differenct classifiers
when applied to a dataset with a fixed number of features, we have an initial model selection scheme to
choose the final number of features to be used.

The dimensionality reduction is done based on a univariate F-test[3] with a 5-fold cross-validation
scheme, after which only the K best features (with the highest F-score) are kept. The reason I chose
a univariate test instead of a more robust statistical test, such as a forward or backward selection was
to reduce the computational complexity, which is already high when dealing with such high-dimensional
spaces. On the other hand, the reason I chose a statistical test instead of a commonly used dimensionality
reduction technique in Natural Language Processing, such as Truncated SVD (known as Latent Semantic
Analysis [4]) is because it was desired to preserve the interpretability of the features (words), avoiding
changing the coordinates of the feature space.

As for the order of n-grams, it is assumed a priori that unigrams (just words) should be used,
as explained in Subsection 5.1. However, for completeness (and for validation of the assumption),
the performance is also evaluated with higher order n-grams, as well as with the Global Vectors for
Word Representation (GloVe) [5]. GloVe is a set of 300-dimensional features for semantic vector space
representation of words, pretrained on 840B tokens found in the Web. In order to derive an utterance
embedding, the mean of the word embeddings (for the words in the utterance) is computed.

The feature selection procedure is only done for the binary problem and the result is also used for
the multiclass problem.

After the decision about the features to be used, the 4 classifiers introduced in Section 3 (Logistic
Regression, Decision Trees (CART'), Boosting (Adaboost), Linear SVM) are trained. Before training on
the whole training set, a model selection is applied based on a 5-fold cross validation. The parameters
yielding the best results (averaged on the 5 folds) are used for the final training and the systems are
evaluated on the test set.

Except for the classifiers, performance is also estimated for a baseline system, where the majority
class is always the predicted one.

At each case, the main metric used for evaluation is not the accuracy, but the F; score, which is
much more reliable, especially for unbalanced classes, as in the problems addressed in this work.
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5 Implementation and Interpretation

The implementation of the project was done using the sklearn library in Python. Most of the plots
were built using the Python library matplotlib, but some of them were built using MATLAB. The
code used for the project (apart from some very simple MATLAB illustrations) is given in separate files
together with this report.

5.1 Pre-processing and Feature Extraction

The assumption made is that the best option would be to use first order n-grams (unigrams), because
the utterances are in general very small, so higher order n-grams cannot capture important information.
Just to verify the assumption, I ran a 5-fold cross validation on the training set for the binary problem.
The classifier used for this experiment is a simple Multinomial Naive Bayes classifier The results are
shown in Figure 2 as a function of the number of features. As observed, the assumption is verified.
Additionally, it is obvious that after some point, more features do not contribute to much better results.
So, I chose to use the 250 most informative unigrams for all the subsequent experiments. Having in
mind the rule of thumb that the number of samples should be at least equal to 5-10 times the number
of features for classification tasks, the data samples available are more than enough.

0.7
unigrams
bigrams
0.65 trigrams
o 0.6 - 4
Q
b
M 055 |- .
0.5 - -
0.45 L L I I |
0 50 100 150 200 250 300

number of n-grams

Figure 2: Fj score as a function of number of n-grams used after a feature selection based on a univariate
F-test.

For completeness, the same experiment (without any feature reduction) was done with standarized
GloVe features, but with a Gaussian Naive Bayes classifier. The corresponding cross-validation Fj score
was 57.78, yielding a worse performance than the n-grams.

5.2 Logistic Regression

In Figure 3, the cross-validation Fj score is plotted as a function of the regularization parameter C'
for the two regularization approaches. Based on the results, the training on the entire training set was
done using C' = 100 with [s regularization for the binary problem and C' = 100 with [l regularization
for the multiclass problem. Great regularization does not help the system. For example, in the case of
1 regularization that promotes sparsity, this behavior was expected because I have already discarded
most of the features through the feature selection.

For better visualization, I first trained the system using only the 2 most informative unigrams. The
resulting decision regions are plotted in Figure 4. It is interesting to observe the decision boundaries
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Figure 3: F} score as a function of the regularization parameter C' for logistic regression.

for the binary problem with the help of the plotted histograms. Even though for both classes the two
particular unigrams are not observed most of the time (as expected - it would be really weird if a specific
word existed in every utterance), there is a significant amount of utterances for the class ‘'main character’
where one of the two words exists. The decision boundary is then drwan by the algorithm based on that.

5.3 Decision Trees

In Figure 5, the cross-validation Fj score is plotted as a function of the minimum number of samples
allowed in the leaf nodes. Based on the results, the training on the entire training set was done using
M = 12 with cross-entropy classification cost for the binary problem and M = 4 with Gini index for the
multiclass problem. In general, early stopping is indeed required to avoid overfitting, but, as shown, we
don’t have to prune a lot (greater M means greater pruning).

As in the case of logistic regression, the decision boundaries when using only 2 features are plotted
in Figure 6. The results are similar, but as expected the regions are with boundaries parallel to the axes
of the feature space.

Finally, in Figures 7 - 10, the actual trees constructed are given.

5.4 Adaboost

In Figure 11, the cross-validation F; score is plotted as a function of the number of weak estimators
E (decision stumps). Based on the results, the training on the entire training set was done using F = 200
for the binary problem and E = 350 for the multiclass problem. It is made obvious that increasing the
number of weak estimators doesn’t necesserily lead to improved performance.

5.5 Linear SVM

In Figure 12, the cross-validation F} score is plotted as a function of the regularization parameter
C for the two regularization approaches. Based on the results, the training on the entire training set
was done using C' = 100 with for the binary problem and C' = 0.001 for the multiclass problem. The
different behavior of the two problems in that aspect is really interesting. However, we should have in
mind that the differences in performance for the multiclass problem are very subtle.
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6 Final Results

The final results, after training the classifiers on the entire training sets with the parameters selected
through the model selection and evaluating them on the corresponding test sets, are reported in Tables
2 and 3. It is noted that all the metrics used (both here and previously) are macro-averaged across the
different classes. With the particular approach we have followed, since the test set was set aside from the
very beginning, those test errors actually reflect reliable estimations for the corresponding out-of-sample
errors of each algotithm. In particular, the out-of-sample error is less than the test error reported plus a
tolerance of ,/ﬁ ln% with probability 1 — d, where N = 56717 for the binary problem and N = 20348
for the multiclass problem.

accuracy | precision ‘ recall ‘ F} score
logistic regression | 72.28 72.59 | 64.34 | 0.6471

decision tree 70.42 67.44 62.31 0.6232
Adaboost 72.14 72.42 64.16 | 0.6449
linear SVM 71.65 71.90 63.42 | 0.6358
baseline 64.07 32.04 50.00 | 0.3905

Table 2: Final results for the binary problem.

accuracy | precision ‘ recall ‘ I score

logistic regression 37.99 38.89 25.06 | 0.1434

decision tree 38.32 13.75 25.13 | 0.1415
Adaboost 37.99 19.02 25.06 | 0.1430
linear SVM 37.89 22.96 24.99 | 0.1427
baseline 38.32 9.58 25.00 0.1385

Table 3: Final results for the multiclass problem.

For the binary problem, logistic regression gives the best results , with Adaboost, however, being
really close. It is interesting that Adaboost (with uses a big number of the simplest possible CART
trees) yields better results than the CART algorithm itself. All the algorithms implemented yielded
significantly better results than the baseline.

For the multiclass problem, on the other hand, which is a significantly more difficult problem, the
algorithms implemented did not manage to give great imrovements with respect to the baseline, as far as
the Fi score or the accuracy are concerned. However, it is interesting, that the precision is significantly
improved, especially using logistic regression.

7 Summary and Conclusions

In this work, four different classification algorithms -Logistic Regression, Decision Trees (CART),
Adaboost, and Linear SVM - were implemented and compared for two different problems, a binary one
and a multiclass one. Special focus was given The final goal was to see how those algorithms can perform
in the difficult task of text-based Speaker Classification, for which reason the scripts of the TV series
South Park were used. Logistic Regression yielded the best results for both problems, even though the
overall improvement was not big compared to the baseline for the multiclass problem. However, it was
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shown that even very simple linguistic features, such as the unigrams, can give valuable hints concerning
the speaker information.
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Figure 7: Part of the decision tree constructed for the binary problem.
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Figure 8: Decision tree constructed for the binary problem when only the 2 most informative features were
used.
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Figure 10: Decision tree constructed for the multiclass problem when only the 2 most informative features
were used.
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