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Abstract

Speaker diarization, the problem of finding “who spoke when” in a speech document,
plays a crucial role in numerous applications and lots of research efforts have been focused
on it over the last few years. In this work, we are trying to incorporate spectral clustering
into the pipeline of the state-of-the-art approach which is followed to tackle the problem.
We are experimenting with different system designs and we are evaluating our method on a
standard dataset used in the field.

1 Introduction

Given a speech signal with multiple speakers talking, speaker diarization answers the question
“who spoke when”. Conceptually, we can think of speaker diarization as encompassing three
main stages [1, 2]. First, a Speech Activity Detection (SAD)1 module detects speech vs. non-
speech (e.g. silence or noise) regions in the input signal. Then, inside each speech region, a
speaker segmentation module finds the speaker change points, that is the timestamps when
there is a transition from a particular speaker to another one. That way, we get a collection
of speaker-homogeneous segments. Finally, a speaker clustering module clusters those segments
into same-speaker groups. The job of a speaker diarization system is visually depicted in Figure
1.

Speaker diarization is a task of utmost importance in speech processing, since it is helpful
for other applications such as speech recognition, speaker identification, automatic summariza-
tion, etc. This is why it has gained significant popularity over the last years with numerous
research efforts trying to tackle the various challenges related to the problem. The traditional
approach has been to extract the Mel-Frequency Cepstrum Coefficients (MFCCs), which are
fixed-dimensional (in the range 10-40) feature vectors representing the spectral characteristics
of a 20-30msec window, model speech segments under some probability distribution (e.g. Gaus-
sian Mixture Models - GMMs), and measure the distance between consecutive segments using
some metric, such as the metric based on the Bayesian Information Criterion (BIC), the Gen-
eralized Likelihood Ratio (GLR), or the Kullback-Leibler divergence (KL or KL2) [1, 2]. When
the distance between two consecutive speech segments is large, a speaker change point has been
detected. After this step, the speaker-homogeneous segments are grouped together using Hier-
archical Agglomerative Clustering (HAC) (bottom-up approach where initially all the segments
are assumed to belong to different speakers), using again a similar distance metric.

More recently, speaker modelling by GMMs has been replaced by i-vectors [3], which are em-
beddings based on the total variability model. In this framework, the cosine distance metric was
initially proposed as the divergence criterion to be used, but Probabilistic Linear Discriminant
Analysis (PLDA) -based scoring has been proved to yield improved results [4]. With the advent
of Deep Neural Networks (DNNs), there has been an increasing interest to apply deep learning
techniques for the task in hand. Indeed, replacing i-vectors by neural embeddings, sometimes
called x-vectors [5, 6], has led to advanced performance for the task of speaker diarization and is
now the state-of-the-art approach. In this work, we are trying to incorporate spectral clustering
[7], which has been successfully applied to various applications, into this framework.

1SAD is by itself an entire area of research.
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(a) Raw signal.

(b) Diarization output.

Figure 1: Finding “who spoke when” in a speech signal. In (b), the white regions indicate
silence or noise. The 5 detected (colored) speech regions are further segmented into 7 speaker-
homogeneous segments which are clustered into 3 same-speaker groups.

The rest of the report is structured as follows: Section 2 reviews the key ideas behind spectral
clustering and presents the main work that has been done using this technique in the field of
speaker diarization. Section 3 reviews a state-of-the-art approach for diarization, that is the
x-vector/PLDA framework. Section 4 introduces our approach for using spectral clustering for
speaker diarization, with the corresponding experiments presented in Section 5. Finally, Section
6 gives a summary of the presented approach and results.

2 Spectral Clustering and Diarization - Previous Work

Let N data points, which for our application are speech segments. Once we have computed
all the pairwise similarities and thus constructed an N × N affinity matrix W, which can be
though of as the adjacency matrix of a weighted graph, spectral clustering [7] exploits the
eigenvalue/eigenvector characteristics of W. Assuming W has only non-negative entries, then
the spectral clustering algorithm proceeds as follows:

1. Define the degrees di =
∑

j Wij and the diagonal matrix D = diag{d1, d2, · · · }.

2. Construct the normalized Laplacian L = D−1/2WD−1/2.
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3. Find the k eigenvectors x1,x2, · · · ,xk of L corresponding to the k largest eigenvalues,
where k is the desired number of clusters. Form the matrix X = [x1|x2| · · · |xk].

4. Normalize the rows of X and form Y, where Yij = Xij/
√∑

j X2
ij

5. Cluster the N rows of Y and assign the original i-th point to cluster j if and only if the
i-th row of Y is assigned to cluster j.

Because of the proven theoretical guarantees of the algorithm [7], as well as the various
domains to which it has been succesfully applied, there have been several attempts of applying
spectral clustering to the problem of speaker diarization. The first relevant work in the field [8]
applies spectral clustering to build a speaker segmentation system based on the timing differences
in multichannel audio signals. In [9] the authors build the affinity matrix using the KL divergence
and replace HAC by spectral clustering achieving similar performance with lower computational
complexity. The number of clusters is chosen based on the “eigengap criterion”, by searching
a drastic drop (or equivalently a drastic increase) in the magnitude of the eigenvalues of the
Laplacian matrix. The eigengap criterion is also used in [10], [11], and [12] to determine the
number of clusters. Spectral clustering is used in conjunction with i-vectors and cosine distance
in [11]. However, it is shown that when the number of speakers is given, spectral clustering
gives worse results, compared to k-means on the original i-vectors. In [13], two cluster criterion
functions are proposed that maximize the separation between intra-cluster and inter-cluster
distances. Those functions are applied in the spetral subspace, exploiting the spectral clustering
framework, in order to determine an optimal number of clusters, before the final clustering
through a HAC-based approach.

3 x-vector/PLDA Approach

Over the recent years, neural embeddings have been successfully used for speaker recogni-
tion and verification [14, 15], outperforming previously used speaker modelling approaches. A
feed-forward network trained to separate same-speaker from different-speaker pairs of speech
segments is presented in [5]. The network is used in text-independent scenarios – which is a
crucial requirement for speaker diarization – and the resulting embeddings are called x-vectors.
The same embeddings are used in [6] for the task of speaker diarization, with the proposed
architecture learning at the same time not only the audio embeddings, but also the required
scoring function. In this work, we are using the x-vectors as our fixed-dimensional embeddings
representing the speech segments, but the scoring is done in the PLDA framework, following the
baseline approach presented in [16].

PLDA [17, 18] is a generalization of Linear Discriminant Analysis (LDA), first proposed to
tackle computer vision problems. It provides a framework in which each data point is considered
to be the output of a model which incorporates both within-individual and between-individual
variation. In the language of speech processing and speaker embeddings, each x-vector vi is
assumed to be decomposed as [19]

vi = m + Φβi + Γαi + ei, βi ∼ N (0, I), αi ∼ N (0, I), ei ∼ N (0,Σ)
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where m is a global offset, Φ is a matirx whose columns form a basis for the speaker-specific
subspace, and Γ is a matrix whose columns form a basis for the channel-specific subspace. In
the original model Σ is supposed to be diagonal, but in [20], a full matrix Σ is proposed to be
used, removing the channel-specific information. Thus, the generative model finally used is

vi = m + Φβi + ei, βi ∼ N (0, I), ei ∼ N (0,Σ)

The parameters m,Φ,Σ are estimated through an Expectation-Maximization (EM) algorithm.
In this framework, the similarity score between two x-vectors vi and vj (which is the i, j-

entry of the affinity matrix W) can be computed via a hypothesis testing. The two hypotheses
are a) that vi and vj have been generated by the same speaker, thus share the same variable
βi = βj , and b) that vi and vj have been generated by different speakers, thus βi 6= βj . So

Wij = log
p(vi,vj |same speakers)

p(vi|different speakers)p(vj |different speakers)

= logN
([

vi

vj

]
;

[
m
m

]
,

[
ΦΦT + Σ ΦΦT

ΦΦT ΦΦT + Σ

])
− logN

([
vi

vj

]
;

[
m
m

]
,

[
ΦΦT + Σ 0

0 ΦΦT + Σ

])
In order to derive this closed-form formula, we assume that the residual terms ei, ej are inde-
pendent for all i 6= j and that the latent variables βi, βj are also independent when the speakers
corresponding to the x-vectors vi, vj are different.

Having established the necessary key notions, the entire system for speaker diarization is
summarized as follows:

1. apply any SAD algorithm

2. uniformly partition every speech segment into overlapping short subsegments

3. extract x-vectors for each subsegment

4. compute the PLDA-score between each pair of subsegments ⇒ affinity matrix W

5. apply Hierarchical Agglomerative Clustering (HAC) on W with average linking

4 Incorporating Spectral Clustering

Since we have constructed the affinity matrix W, here we wish to perform the final clustering
in the spectral subspace instead of directly applying the HAC. However, in order for the relevant
theorems of spectral clustering as presented in [7] to hold, the entries of W are supposed to be
non-negative. Otherwise, it may even be possible that D−1/2 does not exist. In our case, since
the entries of W are the result of a log-likelihood ratio, they may be either positive or negative.
In fact, by the way it was defined, if Wij > 0, it means that the same-speaker hypothesis is
stronger than the different-speaker one for the x-vectors vi, vj , and vice-versa.
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In order to overcome this problem, two different approaches are taken. The simplest one is
to just shift the entire matrix W so that all the entries are non-negative. In other words, we
find the minimum entry of the matrix and we add its absolute value to every entry. The other
approach is based on a generalization of spectral clustering, applied to signed affinity matrices
[21]. Following that apporach, we can use the same steps of spectral clustering, with the only
difference being that in order to compute the degrees di, we sum over the absolute values of
the rows of W, so that the diagonal matrix D has only non-negative entries. The resulting
Laplacian matrix after that modification is called the signed Laplacian.

The entire methodolody, following both approaches, is depicted in Algorithm 1.

Algorithm 1 Spectral Clustering for Speaker Diarization.

construct W following the x-vector/PLDA paradigm ⇒ signed W
if signed Laplacian then

D̄ = diag{d̄1, d̄2, · · · }, d̄i =
∑

j |Wij |
L = D̄−1/2WD̄−1/2

else
W̄ij = Wij + |minij Wij |
D = diag{d1, d2, · · · }, di =

∑
j W̄ij

L = D−1/2W̄D−1/2

end if
X = [x1|x2| · · · |xk]; the k largest eigenvectors of L

Yij , Xij/
√∑

j X2
ij

cluster the rows of Y

5 Experiments & Results

The system proposed is evaluated on the CALLHOME corpus from the National Institute
of Standards and Technology (NIST) 2000 Speaker Recognition Evaluation (SRE) Challenge2.
This is part of a series of challenges that NIST has released over the last years to promote
research in the fields of speaker recognition and diarization. The corpus comprises 500 sessions
with telephone speech. Each session has a duration ranging from 46sec to 607sec, with the
total duration being equal to 17.28h. It is a multilingual dataset (featuring English, Spanish,
Japanese, Arabic, Mandarin, and German), while the number of speakers per session varies from
2 to 7. The sampling rate of the audio is 8kHz.

In order to build the sytem, we use the Kaldi speech recognition toolkit [22], and specifically
we follow the CALLHOME diarization recipe3. The windows to extract the subsegemnts of
each speech region have a length of 1.5sec and 50% overlap (subsegment shift = 0.75sec). For
each subsegment we compute a sequence of MFCCs, which are the input to the network used
to extract the x-vectors. In particular, we use 23-dimensional MFCCs extracted every 10msec
from a 25msec-long window.

2https://catalog.ldc.upenn.edu/LDC2001S97
3https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/v2
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The DNN architecture is similar to the one described in [23]. Each 1.5sec-long subsegment
is initially represented by a sequence of 1.5sec/10msec=150 23-dimensional MFCCs (1 MFCC
vector for each frame). The first hidden layer of the DNN sees the current frame, spliced with
its neihboring frames in a context window of 2 frames, resulting in a 23 + 2× 23 + 2× 23 = 115-
dimensional input, with a 512-dimensional output. The next one does a further temporal pooling
by splicing the current frame t (which is now the output of the first layer) with the frames t− 2
and t + 2 (input dimension = 512 × 3 = 1536, output dimension = 512), while the third layer
splices t with t − 3 and t + 3 (input dimension = 1536, output dimension = 512). No further
splicing is done in layers 4 (input dimension = output dimension = 512) and 5 (input dimension
= 512, output dimension = 1500). All the first five hidden layers are composed of Rectified
Linear Units (ReLUs) with batch normalization. The next layer is called a “statistics pooling”
layer. What it does is collect the outputs of the previous layer for all the 150 frames of the
subsegment (input dimension = 150 × 1500) and compute the mean and standard deviation
vectors (output dimension = 1500 [for the mean] + 1500 [for the standard deviation] = 3000).
The final hidden layer is another ReLU layer with batch normalization (input dimension = 3000,
output dimension = 128) and the output layer is a softmax indicating the speaker identity. The
embeddings (x-vectors) used are the outputs of the final hidden layer. Thus, finally, each 1.5sec-
long subsegment is represented by a 128-dimensional x-vector.

The network is trained using the audio sessions from Switchboard-24, Switchboard Cellural5,
and the NIST SREs of 20046, 20057, 20068, and 20089. The training dataset is also augmented
with reverberation, noise, and music. The PLDA parameters are estimated on the SRE training
subset (not the Switchboard). The x-vectors are further whitened (in order to have identity
covariance matrix) and length-normalized [19]. The whitening transformation is computed on
in-domain data. To do so, we partition the evaluation dataset into two sets of 250 sessions each,
S1 and S2. For i 6= j, to whiten the x-vectors in Si, we treat Sj as a held-out set and we estimate
the whitening transformation on the x-vectors of Sj .

Finally, for the evaluation, we assume that the oracle SAD information, as well as the number
of speakers (clusters) per session are known a priori.

The evaluation metric traditionally used for the task in hand is the Diarization Error Rate
(DER), computed as

DER =
False Alarm Speech + Missed Speech + Speaker Error

Total Reference Speech

where the denominator is the duration of speech given the groundtruth labels. As we can see,
this metric takes into consideration any potential errors from the SAD. In our case, since we
assume that the oracle SAD output is given, the actual error that we compute is given as

DER =
Speaker Error

Total Reference Speech

4https://catalog.ldc.upenn.edu/{LDC98S75, LDC99S79, LDC2002S06}
5https://catalog.ldc.upenn.edu/{LDC2001S13, LDC2004S07}
6https://catalog.ldc.upenn.edu/LDC2006S44
7https://catalog.ldc.upenn.edu/{LDC2011S01, LDC2011S04}
8https://catalog.ldc.upenn.edu/{LDC2011S09, LDC2011S10, LDC2012S01}
9https://catalog.ldc.upenn.edu/{LDC2011S05, LDC2011S08}
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When computing the DER, we allow errors within 250msec of a speaker change point. Addi-
tionally, overlapping segments are ignored.

The results are given in Table 1. The last column gives the results of the baseline system,
without applying spectral clustering, while in the first column we have applied the spectral
clustering transformations and the final clustering is done using k-means, as traddditionally
done. Following this approach, a significant performance drop is observed. In order to bring
closer the two worlds, we also applied spectral clustering with the final clustering of the rows
of Y done via HAC instead of k-means, with the distances computed either in the l2 or the l1
space (columns 2 and 3 in Table 1). In any case, the similarity between two clusters, required
for the HAC algorithm to be applied, is computed as the average of the pairwise similarities
between the x-vectors in the clusters (average linking).

spectral
k-means

spectral
HAC (l2)

spectral
HAC (l1)

baseline
HAC (PLDA)

signed 17.05 11.20 11.52
6.96

unsigned 15.69 11.64 9.47

Table 1: DER(%) using the baseline system, or the proposed approach with signed or unsigned
Laplacian and with the final clustering step done either with k-means or with HAC.

When the final clustering is done through the bottom-up iterative approach (HAC), the
results get significantly improved. Additionally, using the shifted version of W seems to be
beneficial when compared to the use of the signed Laplacian. Overall, the best performance
using spectral clustering is achieved through the HAC approach in the l1 space with the unsigned
Laplacian. However, even that design cannot beat the baseline system. This is in accordance
with previously published results [11], where spectral clustering was used in the i-vector/cosine
distance framework when the number of clusters was known and was compared with a simple
k-means algorithm.

6 Conclusion

In this work we tried to incorporate spectral clustering in the x-vector/PLDA framework for
speaker diarization, which is a state-of-the-art approach for the problem. We proposed two ways
to tackle the “problem” of the signed affinity matrix, with a simple global shift giving the best
performance, while the final clustering was suggested to be done in an agglomerative way, as
is the standard method in diarization. However, our method was not able to beat the baseline
system where the clustering is done directly on x-vectors without any spectral transformation.
In the future, we plan to try some additional refinements of the spectral transformation and the
affinity matrix, in order to analyze their effect on the final performance.
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