
Department of Computer Science

CSCI 599

Machine Learning Theory
Final Project Report

The “Knows What It Knows” Learning Model
and Extensions

Nikolaos Flemotomos
USC I.D.: 7149389176

May 11, 2018

CSCI 599 - Final Project Report 1

Abstract

In this project I present the “Knows What It Knows” learning model, in which the learning algorithm
is not allowed to give wrong answers but it can abstain from giving an answer by replying “I don’t know”.
The goal is to minimize the number of times the algorithm has to answer “I don’t know”. As a next step, I
present a model where the learner is allowed a bounded number of mistakes, as well, and we are interested
in a good trade-off between the number of mistakes and the number of “I don’t know” answers. In this
second model the main focus is on efficient algorithms for learning monotone disjunctions. Throughout
this work, I am trying to shed light on specific aspects, analyzing in detail certain proofs that have been
omitted for simplicity or brevity from the original papers, or highlighting points that could be presented
in a different way.

1 Introduction

Motivated by the reinforcement learning and active learning settings, where exploration algorithms are
used, the authors in [1] have proposed a learning model where the learner is only allowed to make accurate
predictions, although it can abstain by replying “I don’t know”. The learning model is called “Knows
What It Knows” (KWIK), while the “I don’t know” answers are denoted by the symbol ⊥. The model
lives in the Online Learning framework and the general idea is based on the fact that there are scenarios
where we would expect a wrong prediction (or a mistake in the Mistake Bound (MB) model language) to
incur a greater cost than simply admitting that we are not certain about the answer. The authors present
various algorithms and examples where the specific model could find use, while they also present ways of
combining simple KWIK algorithms to solve more complex problems.

The KWIK model can be a powerful learning tool; however there are scenarios where the KWIK bound
is exponentially bigger than the MB of algorithms trying to solve the same problem. Fot that reason, the
restriction of producing only correct or ⊥ answers is relaxed in [2], where some mistakes are also allowed.
By allowing both mistakes and ⊥’s, the problem is now transformed into a trade-off between those two
types of answers, which depends on how costly a mistake may be or, equivalently, how important it is to
get an actual response from the learner no matter what.

Although an optimal trade-off between mistakes and ⊥’s is presented in [2] for learning finite hypotheses
classes, the corresponding algortithm is not efficient, in the sense that it doesn’t run in polynomial time,
and thus, the authors present some specific alternatives for monotone disjunctions and Linear Threshold
Functions (LTFs). Further improving the KWIK and mistake bounds for the case of monotone disjunctions
by novel, efficient algorithms is the goal of [3].

The current work is structured as follows: In Section 2 I formally present the KWIK model in com-
parison to the well-known MB model. In Section 3 I focus on algorithms used to combine KWIK learners,
giving details skipped in some proofs in [1] or presenting the analysis of the algorithms in a different way.
In Section 4 I present the model in [2] which allows both mistakes and ⊥’s. In Section 5 I give the al-
gorithms used in [2] and [3] for learning monotone disjunctions, thoroughly analysing specific aspects of
those. Finally, Section 6 gives a summary of the work.

2 The KWIK Model

The goal of a learning algorithm is to learn a target function c : X → Y . In the Online Mistake Bound
Learning model, the learning session proceeds in a sequence of trials. Throughout the session, the learner

CSCI 599 - Final Project Report 2

maintains an updatable hypothesis h : X → Y and, assuming for now that Y = {0, 1}, in each trial the
learner

• is given an unlabeled example x ∈ X
• outputs h(x)

• is told the true label c(x) and if c(x) 6= h(x) there is a mistake

• updates its hypothesis h if there was a mistake (without loss of generality we may assume a conser-
vative algorithm)

The total number of mistakes should be bounded.
In a similar line of work, and introducing a more general setting where Y can be equal to R, given

parameters ε and δ, in each trial a KWIK learner

• is given an unlabeled example x ∈ X
• outputs h(x) ∈ Y ∪ {⊥}. If h(x) 6= ⊥ then |h(x)− c(x)| < ε with probability > 1− δ
• is told the true output c(x)

• updates its hypothesis h if there was a ⊥ answer

The total number of ⊥’s should be bounded by B(ε, δ). We note that in [1], the algorithm is told the true
output only if it outputs ⊥. However, the two approaches are equivalent, since otherwise, the algorithm
just knows it produced an accurate answer, by the definition of the KWIK model. Additionally, the authors
deal with the “noisy” Bernoulli case as well. In this scenario, Y = [0, 1] and the learner is not told c(x),
but instead is told 1 with probability c(x) and 0 with probability 1− c(x).

The two basic algorithms presented for the case of finite instance space or finite hypothesis class
are the memorization (Algorithm 1) and the enumeration (Algorithm 2) algorithm, respectively. The
memorization algorithm has an obvious KWIK bound equal to |X|. By the way the enumeration algo-
rithm is presented (which is the same as in [1]) it is assumed that Y is also finite. This is because we
claim that the algorithm predicts the correct label only if h(x) = c(x). I am going to elaborate more
on that aspect in Section 3. The KWIK bound of this algorithm is |H| − 1, since initially |L̂| = |H|,
finally |L̂| = 1 (the correct hypothesis which is identical to the target concept) and every time the algo-
rithm outputs ⊥, then Ĥ looses at least one element since at least one h gave a wrong prediction on x.

Algorithm 1 Memorization KWIK algorithm
(|X| <∞).

for x in X do
h(x)← ⊥

end for
while True do

Get some input x ∈ X; Report h(x)
Get the true output c(x)
if h(x) = ⊥ then

h(x)← c(x)
end if

end while

Algorithm 2 Enumeration KWIK algorithm
(|H| <∞).

Ĥ ← H
while True do

Get some input x ∈ X; L̂ = {h(x) : h ∈ Ĥ}
if |L̂| = 1 (which means all h’s agree on x) then

Output the element of L̂
else if |L̂| > 1 (which means there is at least one h

which predicts wrong on x) then
Output ⊥; Get the true output c(x)
Ĥ ′ ← {h : h ∈ Ĥ ∧ h(x) = c(x)}; Ĥ ← Ĥ ′

else if |L̂| = 0 then
FAIL (the problem is not realizable)

end if
end while

CSCI 599 - Final Project Report 3

3 Combining KWIK Learners

Here I am going to analyze some general algorithms which combine KWIK learners aiming at addressing
a more complex problem. In particular, I am going to focus on the union algorithm (Algorithm 6 in [1])
and the noisy union algorithm (Algorithm 9 in [1]).

Theorem 3.1 (Union Algorithm). Let F : X → Y a set of functions. Let {Hi}ki=1 KWIK learnable classes
with Hi ⊆ F and KWIK bounds {Bi(ε, δ)}ki=1. Then H =

⋃
iHi is KWIK learnable with KWIK bound

(k − 1) +
∑

iBi
(
ε
2 ,

δ
k

)
.

Proof. This result is different compared to that in [1]. The reasons will become obvious from the following
analysis. The union algorithm performs similarly as the enumeration algorithm. Here, we keep track of
Â, a set of active algorithms. At each trial, the learner gets some input x ∈ X and each algorithm in Â
gives an output, stored in L̂. If ⊥ ∈ L̂, then output ⊥, get the true c(x) and let the algorithms which
predicted ⊥ update their hypotheses. If ⊥ /∈ L̂ and |L̂| > 1, [1] claims that at least one of the algorithms
has predicted the wrong hypothesis. This is, however, not true in the general case, when for example
Y = R1. In particular, it may be the case that |L̂| > 1 but hi(x) is accurate ∀hi(x) ∈ L̂, in the sense that
|hi(x)− c(x)| ≤ ε∀i. However, the learner can’t know c(x) before it outputs something, so it cannot check
this inequality. Instead, what we can do is force each individual algorithm predict with accuracy ε

2 and
check whether

∃y ∈ Y : |hi(x)− y| ≤ ε

2
∀hi(x) ∈ L̂ (1)

If this is true, output y, since it is guaranteed that there is at least one hk(x) ∈ L̂ (otherwise the problem
is not realizable) such that

|y − c(x)| ≤ |y − hk(x)|+ |hk(x)− c(x)| ≤ ε

2
+
ε

2
= ε

If this is not true, then output ⊥, get the true c(x) and update Â← Â′ where

Â′ = {ai : ai ∈ Â ∧ |hi(x)− c(x)| > ε

2
} (2)

Initially |Â| = k, finally there has to be at least one element in Â and every time Â is updated it looses
at least one element since it means that condition (1) does not hold for any y ∈ Y , and thus, it does not
hold for c(x) ∈ Y , which is appeared in the condition in (2). Thus, at most k − 1 ⊥’s may appear by this
procedure. Since each individual algorithm can also output ⊥, as already mentioned, the overal KWIK
bound is (k − 1) +

∑
iBi

(
ε
2 ,

δ
k

)
. We run each subalgorithm with the parameter δ

k instead of δ (which is
yet another difference compared to [1]), because that way the overall probability of a “bad” hypothesis is
bounded (by a union bound) by k δk = δ.

The previous results are now generalized to the noisy Bernoulli case, as defined in Section 2.

Theorem 3.2 (Noisy Union Algorithm). Let F : X → [0, 1] a set of functions. Let {Hi}ki=1 KWIK
learnable classes with Hi ⊆ F and KWIK bounds {Bi(ε, δ)}ki=1 in the noisy Bernoulli scenario. Then

H =
⋃
iHi is KWIK learnable with KWIK bound O

(
k
ε2

ln k
δ

)
+
∑

iBi

(
ε
4 ,

δ
k+1

)
.

1We note that an example (Example 2) with Y = R is indeed given in [1], where the less general result of Algorithm 6 is
used.

CSCI 599 - Final Project Report 4

Proof. Here I am going to give the proof for k = 2, filling in all the missing parts from the corresponding
proof in [1]. Similarly as in the union algorithm, here we maintain again the sets Â and L̂ and we run the
individual subalgorithms with parameters ε

4 and δ
3 . If ⊥ ∈ L̂ we behave similarly as in the union algorithm.

If ⊥ /∈ L̂ then check whether for the input xt

|h1(xt)− h2(xt)| ≤ ε (3)

If yes, then output h(xt) = h1(xt)+h2(xt)
2 , since it is guaranteed that either h1(xt) or h2(xt) is accurate (if

we assume realizability) and thus, assuming without loss of generality that this is the case for h1(xt):

|h(xt)− c(xt)| ≤ |h(xt)− h1(xt)|+ |h1(xt)− c(xt)| =
∣∣∣∣h1(xt)

2
+
h2(xt)

2
− h1(xt)

∣∣∣∣+ |h1(xt)− c(xt)|

=
1

2
|h2(xt)− h1(xt)|+ |h1(xt)− c(xt)| ≤

ε

2
+
ε

4
=

3ε

4
< ε

If the condition (3) does not hold, then output ⊥, get the observation zt (where y = P (z = 1)) and update
the current total squared prediction error li for each subargorithm. After sufficiently many steps, we can
accurately eliminate the algorithm with the largest li. In particular, we define li =

∑
t∈I(hi(xt) − zt)2,

where I = {t|h1(xt) − h2(xt)| > ε}, or equivalently I = {t|⊥ /∈ L̂t ∧ h(xt) = ⊥}. Let’s say we finally
eliminate the first algorithm because l1 > l2. We need to bound the probability of an error, that is the
probability

P (l1 > l2) = P (l1 − l2 > 0) = P

(∑
t∈I

(h1(xt)− zt)2 − (h2(xt)− zt)2 > 0

)
, P

(∑
t∈I

Ψt > 0

)
(4)

under the assumption that the first algorithm is accurate. We define the random variable
Ψt = (h1(xt)− zt)2 − (h2(xt)− zt)2 with mean

E[Ψt] = P (zt = 1)[(h1(xt)− 1)2 − (h2(xt)− 1)2] + P (zt = 0)[(h1(xt))
2 − (h2(xt))

2]

= c(xt)[h
2
1(xt) + 1− 2h1(xt)− h2

2(xt)− 1 + 2h2(xt)] + (1− c(xt))[h2
1(xt)− h2

2(xt)]

= c(xt)h
2
1(xt)− 2c(xt)h1(xt)− c(xt)h2

2(xt) + 2c(xt)h2(xt) + h2
1(xt)− h2

2(xt)− c(xt)h2
1(xt) + c(xt)h

2
2(xt)

= −2c(xt)h1(xt) + 2c(xt)h2(xt) + h2
1(xt)− h2

2(xt)

= −h2
1(xt)− h2

2(xt) + 2h2
1(xt)− 2h1(xt)h2(xt) + 2h1(xt)h2(xt)− 2c(xt)h1(xt) + 2c(xt)h2(xt)

= −(h1(xt)− h2(xt))
2 + 2[h2

1(xt)− h1(xt)h2(xt) + c(xt)h2(xt)− c(xt)h1(xt)]

= −(h1(xt)− h2(xt))
2 + 2(h1(xt)− c(xt))(h1(xt)− h2(xt))

≤ −(h1(xt)− h2(xt))
2 + 2|h1(xt)− c(xt)||h1(xt)− h2(xt)|

≤ −(h1(xt)− h2(xt))
2 + 2

ε

4
|h1(xt)− h2(xt)| (since we assumed h1 is

ε

4
-accurate)

t∈I
≤ −(h1(xt)− h2(xt))

2 +
|h1(xt)− h2(xt)|

2
|h1(xt)− h2(xt)| = −

(h1(xt)− h2(xt))
2

2
(5)

Additionally,

|Ψt| = |(h1(xt)− zt)2 − (h2(xt)− zt)2| = |h2
1(xt)− h2

2(xt)− 2h1(xt)zt − 2h2(xt)zt|

CSCI 599 - Final Project Report 5

= |(h1(xt)− h2(xt))(h1(xt) + h2(xt))− 2zt(h1(xt)− h2(xt))|
= |h1(xt)− h2(xt)||h1(xt) + h2(xt)− 2zt| ≤ 2|h1(xt)− h2(xt)| (6)

At this point, we are going to use the Hoeffding’s inequality, which we are stating without proof in the
following Lemma:

Lemma 3.1 (Hoeffding’s inequality). If ak ≤ Xk ≤ bk ∀k for some constants ak < bk and if Sn =
∑n

k=1Xk,
then

P (Sn − E[Sn] > t) ≤ exp

[
− 2t2∑n

k=1(bk − ak)2

]
So we have

P (l1 > l2) = P

(∑
t∈I

Ψt > 0

)
= P

(∑
t∈I

Ψt − E

[∑
t∈I

Ψt

]
> −E

[∑
t∈I

Ψt

])

= P

(∑
t∈I

Ψt − E

[∑
t∈I

Ψt

]
> −

∑
t∈I

E [Ψt]

)
(5)

≤ P

(∑
t∈I

Ψt − E

[∑
t∈I

Ψt

]
>
∑
t∈I

(h1(xt)− h2(xt))
2

2

)

(6)

≤
Hoeffding’s

exp

− 2
(∑

t∈I
(h1(xt)−h2(xt))2

2

)2

∑
t∈I (4(h1(xt)− h2(xt)))

2

 = exp

[
−
∑

t∈I (h1(xt)− h2(xt))
2

32

]

≤ exp

[
−
∑

t∈I ε
2

32

]
= exp

[
−|I|ε

2

32

]
We want this error to be bounded by δ

3 , so we choose |I| = 32
ε2

ln 3
δ = O(1

ε2
ln 1

δ). So the total number of ⊥’s
is bounded by the sum of ⊥’s due to this procedure and the ⊥’s which are the output of the subalgorithms,
giving a bound of O(1

ε2
ln 1

δ) +
∑2

i=1Bi
(
ε
4 ,

δ
3

)
. The total probability of error is bounded (by a union

bound) by the error of the comparison between l1 and l2 and the error of the individual algorithms, so it
is ≤ 3 δ3 = δ.

4 Allowing Mistakes in the KWIK Model

Although at a high level the KWIK model may seem like a variant of the MB model, just replacing
mistakes with ⊥’s, in reality there are problems which are easy in the MB scenario, but need exponential
time in the KWIK framework. A nice simple example is presented in [2]: Let the class H : {0, 1}n → {0, 1}
with any hi ∈ H, i = 1, 2, · · · defined as

hi(x) =

{
1, if x is the binary representation of i
0, otherwise

Any target concept in H is MB-learnable with a bound of 1. The algorithm simply predicts 0 until it does
the first mistake for a specific x, for which it now knows that the correct answer is 1 (and it is the only
one by the definition of H). However, since mistakes are not allowed in KWIK, the corresponding bound
is 2n − 1, because the algorithm has to reply ⊥ for all the examples it has not seen until it learns that the
correct label for a specific x is 1. But in the worst case this will be the last example to see and there are

CSCI 599 - Final Project Report 6

totally 2n such examples with n variables. (If it reaches step 2n − 1, then it knows that the last one is
actually labeled 1, since this is the only option left).

For that reason, the authors in [2] propose a hybrid learning model which can be viewed as the KWIK
model allowing up to k mistakes, or as the MB model allowing up to k̃ ⊥’s. For a specific k we are interested
in minimizing the number of ⊥’s and similarly, for a specific k̃ we are interested in minimizing the number
of mistakes.

For a finite hypothesis class, we have seen the enumeration algorithm with a KWIK bound equal to
|H| − 1. If we additionally allow k mistakes, we get the following result:

Theorem 4.1. Let F : X → {0, 1} and let H ⊆ F with |H| < ∞. Then H is KWIK learnable with k

mistakes by Algorithm 3 with a KWIK bound (k + 1)|H|
1
k+1 .

Algorithm 3 KWIK learner with k mistakes for |H| <∞.

Ĥ ← H; m← 0; s← |Ĥ|
k

k+1

while True do
Get some input x ∈ X
Calculate S0 = |{h : h ∈ Ĥ ∧ h(x) = 0}| and S1 = |{h : h ∈ Ĥ ∧ h(x) = 1}|
if mini Si > s then

Output ⊥
else

Output arg maxi Si

end if
Get the true label c(x)
Ĥ ′ ← {h|h ∈ Ĥ ∧ h(x) = c(x)}; Ĥ ← Ĥ ′

if made a mistake then
m← m+ 1; s← |Ĥ|

k−m
k+1−m

end if
end while

Proof. The proof proceeds by induction in k. As the base case, we have the number of ⊥’s until the
first mistake. Until then, at every step there is a ⊥ and at least the minority group (from S1 vs S2)
is removed from H. But the minority group has at least s elements and the size of H is initially |H|.
So, the total steps with such removals cannot be more than |H|

s = |H|

|H|
k
k+1

= |H|
1
k+1 . As the inductive

hypothesis we have that after the first mistake there will be at most k − 1 mistakes and k|Ĥ|
1
k ⊥’s. But

at the first mistake, since the algorithm outputs arg maxi Si, the majority group is removed from H, so

Ĥ has now only the elements of the minority group, which are at most s: Ĥ ≤ s = |H|
k
k+1 . So, the

total number of mistakes will be at most 1 + (k − 1) = k and the total number of ⊥’s will be at most

|H|
1
k+1 + k

(
|H|

k
k+1

) 1
k

= |H|
1
k+1 + k|H|

1
k+1 = (k + 1)|H|

1
k+1 .

Unfortunately, Algorithm 3 has a worst-case exponential running time and large storage requirements,
since it needs to evaluate and store all the members in H, which is finite, but probably exponentially large.
For that reason, the authors analyze efficient algorithms for learning monotone disjunctions and LTFs.
Here, I briefly mention the results and sketch the proofs for the latter. Monotone disjunctions will be the
topic of the next Section. As we know, in the MB model the perceptron algorithm can learn an LTF for

CSCI 599 - Final Project Report 7

δ-separable data with at most O
(

1
δ2

)
mistakes. We note that for this problem H is not even finite. The

main result in the new learning model is the following:

Theorem 4.2. Let data be linearly δ-separable in Rd. Then, a suitable LTF can be learnt with atmost k

mistakes and O
(
R

1
k logR

)
⊥’s, where R =

(
1+
√
d
δ

)d
(√

d
δ

)d =
(

1 +
√
d
δ

)d
.

Sketch of the Proof. The main intuition here is that we are treating the problem as a Linear Program (LP)
with d variables and n linear constraints, where n is the number of examples already seen at a certain
point. Of course, those constraints are not known beforehand, but are revealed gradually, every time the
algorithm is told the true labels of the examples just seen. When a new unlabeled example x arrives, we
can create two new LPs from the current LP, just by adding the two possible constraints; namely that
c(x) = 0 and c(x) = 1. The set of feasible solutions, or core, of each one of those LPs has a smaller size, or
volume, than the original one. But by examining Algorithm 3, we can see that what we need at each step
for making decisions is not the actual volumes (related to the numbers S0 and S1 in Algorithm 3), but
rather their relative volumes, with respect to some function of the volume of the core of the original LP
(related to s in Algorithm 3). The trick is to uniformly sample at every step a sufficiently large number of
points from the core of the current LP, without considering the newly arrived example, and make decisions
based on the majority of those points. This can be done in polynomial time and it can be shown that
we can make decisions about the new LPs with high probability. One final detail needed is to limit the
elements of the weight vectors representing the LTFs in some specific ranges; something that does not
affect the generality of the algorithm and gives us the possibility of estimating the volume of the initial LP
core. A formal analysis of those intuitive steps can lead to the result stated in the Theorem.

5 Algorithms for Learning Monotone Disjuctions with Mistakes and ‘I
don’t know’ Answers

In both [2] and [3] the authors propose algorithms to learn monotone disjunctions in the hybrid online
learning model where both mistakes and ⊥’s are allowed. Here I am going to analyze in detail one relatively
simple and intuitive algorithm proposed in [2] and a more involved one proposed in [3], trying to present
it in a more easily digestible format. For this analysis, it is easier to view the problem in terms of sets.
The goal is to learn the set of relevant variables R ⊆ X such that for any Q ⊆ X the target concept is
c(Q) = 1 iff Q ∩ R 6= φ. For any example xq, the corresponding set Q is defined as Q = {xi|xqi = 1}. We
will maintain the sets P+ : P+ ⊆ R (such that every xi ∈ P+ is relevant), P− : P− ∩ R 6= φ (such that
every xi ∈ P− is irrelevant) and P = X ⊆ (P− ∪ P+) (such that every xi ∈ P+ is unknown).

Theorem 5.1. Monotone disjunctions can be learnt by Algorithm 4 with at most M ≤ n
2 mistakes and at

most n− 2M ⊥’s.

Proof. Every time the learner makes a mistake, P looses at least two elements and since initially |P | = n,
there can be at most n

2 mistakes. Every time the learner outputs ⊥, P looses exactly one element and
finally |P | = |φ| = 0, so for the total number of ⊥’s, say B, it must be B + 2M ≤ n⇒ B ≤ n− 2M .

Using similar ideas, the authors propose an algorithm which makes at most M ≤ n
3 mistakes and

outputs at most 3n
2 − 3M ⊥’s. Vieiwing again the problem in terms of sets, an improved algorithm is

presented in [3], the analysis of which is reviewed below. Before that we will need the following definition:

CSCI 599 - Final Project Report 8

Algorithm 4 Learning Monotone Disjunctions with n
2 mistakes.

P ← {xi}ni=1; P+ ← φ; P− ← φ
while P 6= φ do

Get some input Q
if Q ∩ P+ 6= φ (then we are certain the label is 1) then

Output 1
else if Q ⊆ P− (then we are certain the label is 0) then

Output 0
else(then we are not certain about the label)

if |Q ∩ P | ≥ 2 then
Output 1

else(which means |Q ∩ P | = 1)
Output ⊥

end if
Get the true label c(Q)
if made a mistake then

P− ← P− ∪ (Q ∩ P); P ← P \ (Q ∩ P)
else if output was ⊥ ∧ c(Q) = 1 then

P+ ← P+ ∪ (Q ∩ P); P ← P \ (Q ∩ P)
else if output was ⊥ ∧ c(Q) = 0 then

P− ← P− ∪ (Q ∩ P); P ← P \ (Q ∩ P)
end if

end if
end while
return P+

Definition 5.1. Let some constant k and let the sets of sets A2, A3, · · · , Ak such that M ∈ Ai ⇒ |M | =
i∧M ∩R 6= φ for the desired set of relevant variables R (which would mean that the true label of M is 1).
A set S is called critical with respect to Ai, with i > |S| if |Ii| , |{T : T ∈ Ai ∧ S ⊆ T}| = li−|S|+1 , lj

where li = k4i.

Theorem 5.2. Monotone disjunctions can be learnt with at most n
k mistakes and at most O

(
k41+kn

)
⊥’s

for any constant k.

Proof. The algorithm initially proceeds in a similar way as Algorithm 4. Namely, for an input Q we first
check whether Q∩P+ 6= φ or Q ⊆ P− and output 1 or 0 with centainty. But now we additionally maintain
the sets {Ai}ki=2, as defined in Definition 5.1. So, we can additionally check whether ∃i ∈ {2, 3, · · · , k}∃M ∈
Ai : Q ⊇ M . If this condition holds, then output 1 with certainty. In a similar manner as in Algorithm
4, if those checks fail, we then check whether |Q ∩ P | > k, which means Q has > k unknown variables. If
this condition holds, then we output 1 and if we made a mistake, then we know we have put at least k+ 1
variables in P−.

Here comes the main difference from the previous algorithm. If Q has a critical subset S with respect
to some Ai then output 1. If we made a mistake, then, using the notation in Definition 5.1, ∀Tp ∈ Ii let
T ′p = Tp \ S. We know that

Tp ∈ Ai ⇒ |Tp| = i ∧ Tp ∩R 6= φ (7)

T ′p ⊆ Tp
(7)⇒ T ′p ∩R 6= φ (8)

CSCI 599 - Final Project Report 9

|T ′p| = |Tp| − |S|
(7)
= i− |S| = (i− |S|+ 1)− 1 = j − 1 (9)

So from (8) and (9), T ′p satisfies all the conditions to be added in the family Aj−1 if j > 2. We know that
there are |Ii| = lj such sets T ′p. We select a disjoint family of those following this procedure (PG): ◦ select

one random T ′p; ◦ discard any T ′m : T ′m∩T ′p 6= φ; ◦ select one random T̂ ′p from the remaining ones; ◦ discard

any T ′m : T ′m ∩ T̂ ′p 6= φ; · · · . If j > 2 add all those selected sets to Aj−1. If j = 2, we know that for every
selected T ′p (8) ⇒ c(T ′p) = 1 and (9) ⇒ |T ′p| = 1, so this one variable in every T ′p is relevant and can thus
be added to P+.

Finally, if none of the above checks hold true, then output ⊥ and get the true label c(Q). If c(Q) = 0,
then add all the variables of Q to P−. If c(Q) = 0 then add Q to A|Q|, which is legal, since the two
conditions of elements in A|Q| are satisfied; namely |Q| = |Q| and c(Q) = 1.

As it is the case for Algorithm 4, every time we add elements to onse set, we need to carefully update
the others. So, in this case

• When we add a set S to Ai, we have to remove all its supersets from Ai+1, Ai+2, · · · , Ak.
• When we add a variable x to P+ or P−, we have to remove it from P and also remove all the supersets

of {x} from A2, A3, · · · , Ak.
• When we add a set S to Ai, we check whether some S̃ ⊂ S has become critical with respect to Ai.

If yes, we have to remove all its supersets from Ai+1, Ai+2, · · · , Ak.

Now, in order to prove the theorem, we first have to prove those Lemmas:

Lemma 5.1. ∀i ∈ {2, 3, · · · , k}∀S|Ii| ≤ li−|S|+1 = lj (in case of equality S is critical wrt Ai)

Proof. We may add an element to some Ai if (a) the learner outputs ⊥ and c(Q) = 1, or (b) Q has a critical
subset (we output 1) but c(Q) = 0. In case (a) we know that Q has no critical subset wrt Ai (otherwise
the output would not be ⊥), so |Ii| < lj and we just add one element (Q), so after the update |Ii| ≤ lj . In
case (b) we add all the disjoint sets T ′p to Aj−1. What if for some T ′p ∃S ⊆ T ′p : S is critical wrt Aj−1? But
this is not possible since then we should have removed all its supersets from Av, v > j− 1, thus we should
have removed Tp ⊃ T ′p ⊇ S from Ai, which is a contradiction since Tp ∈ Ai. So, again after the update no
property of the sets and familys is violated.

Lemma 5.2. The number of selected sets during the procedure (PG) is at least

√
lj
j .

Proof. First, we prove that from the lj sets T ′p, there are at most
√
lj which share a common variable.

This is easily done by contradiction, because
√
lj ≥ lj−1 by defition. So, if there are >

√
lj such sets with

a common variable x, that implies there are lj−1 sets Tp which share x and also all the variables in S, and
thus share |S| + 1 variables. Now, letting S′ = S ∪ {x} we have that |{Tp : Tp ∈ Ai ∧ S′ ⊆ Tp}| > lj−1,
where j − 1 = i− |S|+ 1− 1 = i− |S|. But this number has to be ≤ li−|S′|+1 = li−|S| by Lemma 5.1.

Having this result, after we select the first T ′p, we know we will discard at most
√
lj sets for each variable

of T ′p, which has j− 1 variables, so we will discard at most (j− 1)
√
lj + 1 sets (plus 1 since we also discard

the exact T ′k which we had selected). Now, there are at least lj − ((j − 1)
√
lj + 1) sets to select from and

after our selection we discard again at most (j − 1)
√
lj + 1 sets. We continue for r times until we have

nothing left to select from:

lj − r((j − 1)
√
lj + 1) = 0⇒ r =

lj

(j − 1)
√
lj + 1

≥ lj

1 + j
√
lj
≥ lj

h
√
lj

=

√
lj

j

CSCI 599 - Final Project Report 10

Lemma 5.3. The total number of sets inserted in {Aj}ij=2 is at most Ui = 3i!n
4

∏i
j=2 lj.

Sketch of the Proof. The proof proceeds by induction in i. For i = 2, the number of sets we insert in A2

is the sum of (a) the number of sets we remove from A2 at some point and (b) the number of sets in A2

at the end of the algorithm. We remove from A2 only when we add some variable x to P− or P+, when
we remove all the supersets of {x}. But |{T : T ∈ A2 ∧ {x} ⊆ T}| ≤ l2−|{x}|+1 = l2. And since there are n
variables, we can totally remove at most nl2 sets. At the end of the algorithm there are at most l2 sets in
A2 containing a variable x̃ and every set has 2 variables. So, there are at most nl2

2 sets, giving a total of

nl2 + nl2
2 = 3nl2

2 = U2.

For i > 2, scenario (b) is the same as above, so it gives nli
i sets. For (a), we may similarly remove up

to nli sets because of variables added in P+ and P−. But now we may also remove sets because of all the
other reasons listed before Lemma 5.1. It is easily shown that we can remove at most (i − 1)li sets from
Ai because of any kind of insertion in Ap’s, p < i. So, using the inductive hypothesis, we finally have at
most nli

i + nli + (i− 1)liUi−1 + Ui−1 which gives the wanted result.

Now we can prove the bounds on the number of mistakes and ⊥’s. We have those sources of mistakes:
(a) If |Q ∩ P | > k and we make a mistake, we move ≥ k + 1 variables to P−. But P− can eventually have
at most n variables. So, we can have at most n

k+1 mistakes. (b) If Q has a critical subset wrt some Ai,

then at least

√
lj
j sets are added to Aj−1. But we may totally add to Aj−1 ≤ sets than what we may add

to {Av}j−1
v=2 which is ≤ Uj−1. So, we can have at most j√

lj
Uj−1 mistakes (related to the specific Ai with

j > 2) which is equal to

j√
lj

3n

4
(j − 1)!

j−1∏
p=2

lp =
3n

4
j!

1√
lj

j−1∏
p=2

lp ≤ nj!
k
∑j−1
p=2 4p

k
4j

2

= nj!
k

4j−2

3

k
4j

2

≤ nj!k
4j

3

k
4j

2

= nj!k−
4j

6 ≤ n

k
4j

6

<
n

k3

with the last inequality being valid because j ≥ 3 ⇒ 4j ≥ 43 ⇒ 4j

6 ≥
43

6 > 3. (c) If we are again in the

same setting as in (b) but j = 2, then at least
√
l2
2 variables are added to P+. But P+ can eventually have

at most n variables. So, we can have at most

2√
l2
n =

2n

k42
=

2n

k8
=

2

k

n

k7
≤ n

k7
<

n

k3

mistakes. Adding all the (a), (b), (c) scenarios, the number of mistakes is at most

n

k + 1
+
n

k3
(because of A2) +

n

k3
(because of A3) + · · ·+ n

k3
(because of Ak) =

n

k + 1
+ (k − 1)

n

k3

But (k − 1)k(k + 1) = k(k2 − 1) = k3 − k < k3. So this is bounded by

n

k + 1
+ (k − 1)

n

(k − 1)k(k + 1)
=

kn+ n

k(k + 1)
=
n

k

CSCI 599 - Final Project Report 11

Every time the learner outputs ⊥ we insert Q to A|Q| or the variables of Q to P−. But eventually there
are at most n variables in P− and at most Uk sets added to all Ai’s. So the total number of ⊥’s is at most

n+Uk = n+
3n

4
k!

k∏
p=2

lp = n+
3n

4
k!

k∏
p=2

k4j ≤ n+nk!k
∑k
p=2 4p ≤ n+nkk+

∑k
p=2 4p < n+n

(
k4k+1 − 1

)
= nk4k+1

since k ≥ 2.

It is briefly noted that the authors propose an additional algorithm with even better bounds using
similar ideas with LPs and uniform sampling as explained during the analysis of Theorem 4.2. The

algorithm makes at most O
(
n log logn

logn

)
mistakes and O(n2 log logn) ⊥’s. This is a nearly optimal result

in the sense that it is proved that any learner for disjunctions giving polynomial number of ⊥’s has to

make Ω
(

n
logn

)
mistakes. The downside, however, is the running time per step, which is Õ(n3) (ignoring

logarithmic terms), compared to the running time of the algorithm analyzed in Theorem 5.2 which is

O
(
k41+kn

)
.

6 Conclusion

In this work I presented the KWIK model and an extension of it allowing both mistakes and ⊥ answers,
trying to combine the positive aspects of the KWIK and MB models. Those tools can be helpful in
situations where abstaining is preferable than predicting wrong. Apart from providing general definitions
and algorithms, much attention was given to the specific problem of learning monotone disjunctions,
presenting efficient algorithms for this important problem in Computational Learning Theory.

References

[1] Lihong Li, Michael L. Littman, and Thomas J. Walsh. “Knows what it knows: a framework for self-
aware learning.” Proceedings of the 25th international conference on Machine learning. ACM, 2008.

[2] Amin Sayedi, Morteza Zadimoghaddam, and Avrim Blum. “Trading off mistakes and don’t-know pre-
dictions.” Advances in Neural Information Processing Systems. 2010.

[3] Erik D. Demaine, and Morteza Zadimoghaddam. “Learning Disjunctions: Near-Optimal Trade-off be-
tween Mistakes and I Don’t Knows.” Proceedings of the twenty-fourth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics, 2013.

	Introduction
	The KWIK Model
	Combining KWIK Learners
	Allowing Mistakes in the KWIK Model
	Algorithms for Learning Monotone Disjuctions with Mistakes and `I don't know' Answers
	Conclusion

